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LAMFA, Université de Picardie Jules Verne, CNRS UMR 7352,
33, rue Saint-Leu, 80000, Amiens, France.

Abstract. In his proof of the K(π, 1) conjecture for complex reflection arrangements,
Bessis defined Garside categories suitable for studying braid groups of centralizers of
Springer regular elements in well-generated complex reflection groups. We provide a
detailed study of these categories, which we call Springer categories.

We describe in particular the conjugacy of braided reflections of regular centralizer in
terms of the Garside structure of the associated Springer category. In so doing we obtain
a pure Garside theoretic proof of a theorem of Digne, Marin and Michel on the center
of finite index subgroups in complex braid groups in the case of a regular centralizer
in a well-generated group. We also provide a “Hurwitz-like” presentation of Springer
categories. To this aim we provide additional insights on noncrossing partitions in the
infinite series. Lastly, we use this “Hurwitz-like” presentation, along with a generalized
Reidemeister-Schreier method we introduce for groupoids, to deduce nice presentations
of the complex braid group B(G31).
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Introduction

LetW be an irreducible complex reflection group. In the case whereW is well-generated
(i.e it can be generated by a number of reflections equal to its rank), Bessis introduced in
[Bes15, Section 8] a Garside monoid, whose group of fractions is naturally isomorphic to
the complex braid group B(W ) of W . It is the the so-called dual braid monoid.

This Garside monoid has then been used to study group theoretic questions on com-
plex braid groups. For instance the center of any finite index subgroup is determined in
[DMM11] through the use of various Garside monoids, including the dual braid monoid.
More recently, González-Meneses and Marin defined in [GM22] a general notion of para-
bolic subgroups of a complex braid group. They also studied these subgroups using the
dual braid monoid notably.

Unfortunately, this approach is not available when W is not well-generated. This proves
especially problematic for the exceptional group G31, which is both badly-generated and
of high rank. This lack of a well-studied Garside structure was a hindrance in completing
the study program of complex braid groups. For instance the proof of [DMM11, Theorem
1.4] for the complex braid group B(G31) requires external arguments involving Krammer
representations.

However, Bessis also defined in [Bes15, Section 11] a Garside category suitable for study-
ing the braid group of the centralizer of a Springer regular element in a well-generated
group. This approach applies in particular to G31, which appears as the centralizer of a
Springer regular element inside of the well-generated group G37. The problem is now to
understand these Garside categories. Indeed, the theory of Garside categories, which was
in its infancy when Bessis wrote his article, is now much more developed, and allows for the
generalization of many (if not all) properties of the dual braid monoid to these categories.
This article aims to be a first step in this program.

Let W be a well-generated irreducible complex reflection group, and let g ∈ W be a
regular element for the eigenvalue ζd := exp(2iπd ), where d is a positive integer. The group
Wg := CW (g) is again a complex reflection group, and the braid group B(Wg) is isomorphic
to the centralizer in B(W ) of a so-called regular braid ([Bes15, Theorem 12.4]). The proof
of this statement by Bessis relies on heavy topological arguments, which boils down to the
construction of a Garside category C, whose enveloping groupoid (obtained by formally
inverting all morphisms) is equivalent to B(Wg). The dual braid monoid can be seen as a
particular case of this topological construction (associated to the regular element Id). We
refer to the category C as the Springer category (associated to Wg and W ) from now on.

On the other hand, the construction of the category C can be formulated in a pure
Garside theoretic manner as a category of periodic elements. We recall this construction
in Section 1, before we restate the topological construction in Section 2.

The interaction between these two construction then allows us to describe the braided
reflections of the group B(Wg) in terms of the Garside structure of C. In the classical case,
the atoms of the dual braid monoid are known to be a set of braided reflections generating
the braid group B(W ). The same result cannot hold in the case of a category, as an atom
of the category C may have a different source and target, and thus it cannot be identified
with an element of B(Wg). However we have a similar result. For every atom a in C, we
define two morphisms a♭ and a# which have same target and same source as a, respectively.
We then get an element λ(a) := aa#a## · · · a♭♭a♭ ∈ C(u, u), which we call an atomic loop
(associated to a).
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Theorem. (Theorem 3.31) Let u be an object of C. Any atomic loop inside C(u, u) is
a braided reflection of the group B(Wg) ≃ B(u, u). Conversely, any braided reflection
σ ∈ B(Wg) ≃ B(u, u) is conjugate in B to some atomic loop.

In the case where C is a monoid, the atomic loop associated to an atom is simply the
atom itself, and we recover the situation of the classical case. This explicit description of
the braided reflections in terms of the Garside structure of B and C enables us to study
the conjugacy of braided reflections and their powers using Garside theory. The following
theorem ensures that the conjugacy of powers of braided reflections is “the same as” that
of braided reflections.

Theorem. (Theorem 3.37) Let λ(s) ∈ C(u, u) be an atomic loop of some object u, and let
f ∈ G. If there is some endomorphism z ∈ C such that λ(s)nf = fz for some n ⩾ 1, then
z = λ(s′)j for some atomic loop λ(s′) such that λ(s)f = fλ(s′).

This result was already proven by Digne, Marin and Michel in the case of the dual braid
monoid ([DMM11, Proposition 2.2]). As a corollary, we obtain the analogue of [DMM11,
Theorem 1.4] in our case:

Corollary. (Corollary 3.39) LetW be a well-generated irreducible complex reflection group,
and let g ∈ W be a ζd-regular element for some integer d (where ζd := exp(2iπd )). If
U ⊂ B(Wg) is a finite index subgroup, then we have Z(U) ⊂ Z(B(Wg)).

This was already proven in [DMM11] for all complex braid groups, although the proof
in the case of B(G31) relied on computations and the use of the generalized Krammer
representation.

Our other point of focus in this article concerns presentations of Springer categories, and
a way to deduce from such a presentation a presentation of the associated group B(Wg).
First, we have a presentation of the Springer category C associated to B(Wg)

Theorem. (Theorem 3.27) A Springer category is presented by its atoms, endowed with
the Hurwitz relations, that is, all the relations induced by commutative squares of atoms.

Again, this is known to hold for dual braid monoids ([Bes15, Lemma 8.8]). The proof
of this theorem relies on the particular case where the Springer category happens to be
a monoid. In this case we show (Theorem 3.10 and Corollary 3.11)) that the Springer
category is naturally isomorphic to the dual braid monoid associated to Wg (which is well-
generated in this case). As a byproduct we obtain (Corollary 3.22) an isomorphism between
the lattice of simples of the dual braid monoid associated to G(d, 1, n) and the lattice of
noncrossing partitions of type (d, 1, n) defined in [BC06, Definition 1.11].

In the case of well-generated groups, following the indication of [Bes15, Remark 8.9], one
can use the Hurwitz presentation of the dual braid monoid to prove other presentations of
the associated braid group, like the ones of [BMR98, Table 3] or [BM04, Section 2].

Following the idea of [Bes15, Remark 11.29], we propose in Section 4 a generalization
of this work to the case of categories, which we apply to the complex braid group B(G31).
The underlying method is an analogue of the Reidemeister-Schreier method adapted for
groupoids. We define a Schreier transversal for a connected free groupoid F(S) as a set
of paths starting from a fixed object u0 (the root of the transversal) and arriving at every
object of F(S).
Proposition. (Reidemeister-Schreier method for groupoids, Proposition A.13)
Let G = ⟨S | R⟩ be a connected presented groupoid. A Schreier transversal T for F(S)
rooted in the object u0 induces an explicit presentation of the group G(u0, u0).

We consider the Springer groupoid B31 associated to the embedding of G31 inside G37

as the centralizer of a i-regular element. By choosing a particular Schreier transversal
rooted in an object u, we are able to obtain a presentation of B31(u, u) ≃ B(G31), where
the generator are atomic loops. By considering a particular object of B31, we obtain the
following theorem.
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Theorem. (Theorem 4.2 and Section 4.3.1)
The complex braid group B(G31) is given by the following presentation

B(G31) ≃

〈
s, t, u, v, w

∣∣∣∣∣∣
ts = st, vt = tv, wv = vw,
suw = uws = wsu,
svs = vsv, vuv = uvu, utu = tut, twt = wtw.

〉
where s, t, u, v, w are braided reflections.

This is the presentation of B(G31) that was conjectured in [BMR98, Table 3] and
[BM04, Conjecture 2.4]. Another approach to prove this presentation was proposed in
[Bes15, Section 4], using the data of [BM04, Figure 3]. Unfortunately, this method cannot
readily be carried out with these data as the formula for the discriminant of G31 given by
[BM04, Figure 3] does not appear to satisfy the conditions of [Bes15, Corollary 4.5] (the
discriminant considered in [Bes15, Corollary 4.5.(iii)] is zero everywhere).

By considering other objects of B31, we obtain other new presentations of B(G31). They
are all positive homogeneous with braided reflections (atomic loops) as generators. They
give explicit examples of presentations whose existence was proven in [Bes01, Theorem 0.1]
in the case of G31. For each presentation, we give in particular an explicit isomorphism to
the presentation given above in terms of images of the generators.

This work is part of my PhD thesis, with some results originating from my Master’s
thesis. Both are done under the supervision of Pr. Ivan Marin. I thank him for his
precious advice during the preparation and redaction of this article.

1. Preliminaries on Garside categories

Garside categories were originally introduced near the end of the 2000s as a natural
generalization of Garside monoids (see for instance [Kra08] or [Bes07]). A comprehensive
survey of the general theory of Garside categories is made in [DDGKM]. Throughout this
paper, all categories are assumed to be small categories.

1.1. Definitions. We start with a category C. The set of objects of C will be denoted
by Ob(C). For u, v ∈ Ob(C), the set of morphisms from u to v in C will be denoted by
C(u, v). We follow the usual convention for composition of arrows in Garside categories:
the composition of the diagram

x
f // y

g // z

will be denoted by fg.
For u ∈ Ob(C), we consider C(u,−) (resp. C(−, u)) the set of morphisms in C with source

u (resp. with target u). We define a relation ⪯ on C(u,−) by

∀f, g ∈ C(u,−), f ⪯ g ⇔ ∃h | fh = g.

In particular, the source of h is the target of f , and the target of h is the target of g. We
say that g is a right-multiple of f and that f left-divides g. Likewise, we define a relation
⪰ on C(−, u).

We want the relations ⪯ and ⪰ to be preorders. A classical condition to study this
problem is that of (left- and right-)Noetherianity (cf [DDGKM, Definition II.2.26]).
However, for the purpose of this article, we can use the stronger condition of homogeneity.

Definition 1.1. ([Bes07, Definition 2.2])
Let C be a category. A length functor is a functor ℓ : C → (Z⩾0,+), such that C is
generated by morphisms of positive length. A category C endowed with a length functor ℓ
is called a homogeneous category.

A homogeneous category admits no nontrivial invertible morphism. Indeed if f is in-
vertible, then we have ℓ(f)+ ℓ(f−1) = ℓ(1) = 0, so ℓ(f) = ℓ(f−1) = 0. Since C is generated
by elements of positive lengths this implies that f is trivial.
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A convenient way to prove that a category (or a monoid) is homogeneous is to define it
by a homogeneous presentation (cf Lemma A.7).

Lemma 1.2. Let C = (C, ℓ) be a homogeneous category, and let u ∈ Ob(C). The relations
⪯ and ⪰ are preorders on C(u,−) and C(−, u), respectively.

Proof. We prove the result for⪯, the result for⪰ is obtained by working in Cop. The relation
⪯ is obviously reflexive and transitive, it only remains to show that it is antisymmetric.
Let f, g ∈ C(u,−) be such that f ⪯ g and g ⪯ f . We have ℓ(f) ⩽ ℓ(g) and ℓ(g) ⩽ ℓ(f), so
ℓ(g) = ℓ(f). Let h be such that fh = g. We have ℓ(h) = ℓ(g)− ℓ(f) = 0, thus h is trivial
and f = g. □

Let C be category. A nontrivial element in C which admits no left-divisor (other than
itself and the identity) is called an atom . In a homogeneous category (C, ℓ), a morphism
of length f can always be written as a composition of at most ℓ(f) atoms.

Definition 1.3. ([DDGKM, Definition 2.9])
Let u be an object of a homogeneous category C.
• The left-gcd of f, g ∈ C(u,−) is the meet of f and g in (C(u,−),⪯) (should it exist),
we denote it by f ∧ g.

• The right-lcm of f, g ∈ C(−, u) is the join of f and g in (C(u,−),⪰) (should it exist),
we denote it by f ∨ g.

• Likewise, we define f ∧R g and f ∨L g the right-gcd and the left-lcm of f and g,
respectively.

Of course, gcds and lcms need not exist in C. We need two more general definitions
before we move on to the definition of a Garside category.

Definition 1.4. ([DDGKM, Definition II.2.52])
Let C be a category. We say that C is cancellative if every equality of the form fgh = fg′h
in C implies g = g′. This is equivalent to the statement that every morphism in C is both
a monomorphism and an epimorphism.

Definition 1.5. ([DDGKM, Definition V.2.19])
Let C be a homogeneous cancellative category. A Garside map in C is a map ∆ : Ob(C) →
C satisfying the following assumptions

(1) For u ∈ Ob(C), the source of ∆(u) is u. The target of ∆(u) is denoted by ϕ(u).
(2) The map ∆ is target injective: if u ̸= v, then ϕ(u) ̸= ϕ(v).
(3) The families

Div(∆) :=
⊔

u∈Ob(C)

([1u,∆(u)],⪯) and DivR(∆) :=
⊔

u∈Ob(C)

([1ϕ(u),∆(u)],⪰)

are equal. We say that ∆ is a balanced map.
(4) The family S := Div(∆) is finite and generates C. We call its elements the simple

morphisms.
(5) For every g ∈ C(u,−), the elements g and ∆(u) admit a left-gcd.

A homogeneous cancellative category C endowed with a Garside map ∆ will be called a
homogeneous Garside category.

Remark 1.6. This definition is actually stronger than [DDGKM, Definition V.2.19], we
notably assume that S = Div(∆) is finite. This implies in particular that C must have a
finite number of objects.

Let from now on (C,∆) be a homogeneous Garside category. To avoid heavy expressions,
we will often replace the assertion “f = ∆(u) where u is the source of f” with “f ∈ ∆” or
even “f = ∆”. This causes no confusion because f = ∆(u) implies that u is the source of
f , thus ∆(u) is the only morphism of the form ∆(x) to which f may be equal.
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For s ∈ S, we denote by s (resp. s∗) the morphism in S such that ss ∈ ∆ (resp.
s∗s ∈ ∆). Both s and s∗ are unique by cancellativity.

Proposition 1.7. ([DDGKM, Proposition V.1.28 and Proposition V.2.32])
Let (C,∆) be a homogeneous Garside category. We define an automorphism ϕ of C by
setting

- for u ∈ Ob(C), ϕ(u) is the target of ∆(u).
- for f ∈ C(u, v), ϕ(f) is the unique morphism in C such that f∆(v) = ∆(u)ϕ(f).

Furthermore, ϕ has finite order and ∆ is a natural transformation from the identity functor
1C of C to ϕ.

Let s be a simple morphism. We have ϕ(s) = s because s∆ = (ss̄)s = ∆s. In particular
we see that ϕ maps S into itself. Since S is finite and generates C, ϕ has finite order. We
also get that ϕ is uniquely determined by the property that, for all s ∈ S, we have ϕ(s) = s.

Proposition 1.8. ([DDGKM, Proposition V.2.35])
Let (C,∆) be a homogeneous Garside category, and let u ∈ Ob(C). The posets (C(u,−),⪯)
and (C(−, u),⪰) are lattices. The posets (S(u,−),⪯) and (S(−, u),⪯) are sublattices of
these lattices.

Remark 1.9. If we consider the particular case of monoids, that is categories with only
one object, we recover the classical definition of a homogeneous Garside monoid. The
relations ⪯ and ⪰ are the classical left- and right-divisibility relations. The Garside map
∆ corresponds to an element of the monoid, which is the Garside element.

Let (C,∆) be a homogeneous Garside category with set of simples S, and let ϕ be the
automorphism of C introduced in Proposition 1.7. In the sequel, we will often be interested
in subcategories of fixed points under some power of ϕ. Let q ⩾ 0 be an integer, and let
Cϕq

be the subcategory of C consisting of ϕq-invariant morphisms. We also consider the set
Sϕq

of simple morphisms which are ϕq-invariant.

Lemma 1.10. Let a, b ∈ C. If two of a, b and ab lie in Cϕq
, then so does the third.

Proof. If both a and b are ϕq-invariant, then ϕq(ab) = ϕq(a)ϕq(b) = ab. If both a and ab
are ϕq-invariant, then ϕq(a)ϕq(b) = ϕq(ab) = ab = ϕq(a)b, and ϕq(b) = b by cancellativity.
The third case is dual to the second. □

Lemma 1.11. Let s ∈ S and suppose that the source of s is ϕq-invariant. We denote by
ψ(s) the right-lcm in S of all the ϕiq(s) for i ∈ Z⩾0. We have ψ(s) ∈ Sϕq

, and for every
y ∈ Sϕq

, we have s ⪯ y in S if and only if ψ(s) ⪯ y in Sϕq
.

Proof. Let u be the source of s, and let n denote the order of ϕq. We have ψ(s) =

s∨ϕq(s)∨ · · · ∨ϕ(n−1)q(s). As ϕq induces an automorphism of the lattice S(u,−), we have

ϕq(ψ(s)) = ϕq(s) ∨ ϕ2q(s) ∨ · · · ∨ ϕnq(s) = ψ(s)

and ψ(s) ∈ Sϕq
. Let now y ∈ Sϕq

, if ψ(s) ⪯ y, then s ⪯ ψ(s) ⪯ y. Conversely, if x ⪯ y,
then for all i ∈ [[1, n − 1]], we have ϕiq(s) ⪯ ϕiq(y) = y, thus ψ(s) ⪯ y by definition of the
right-lcm. □

By [DDGKM, Proposition VII.4.2], the category Cϕq
, endowed with the restriction of

the map ∆, is again a Garside category. Its simple morphisms are the elements of Sϕq
. In

particular we see that (Sϕq
(u,−),⪯) is always a lattice.

1.2. Normal forms, groupoid and conjugacy. From now on, we fix a homogeneous
Garside category (C,∆), and S its set of simple morphisms. Recall from [DDGKM, Defi-
nition II.1.28] that a S-path is a sequence of composable elements of S in C. By definition
of a homogeneous Garside category, every morphism in C can be expressed by a S-path.
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Definition 1.12. ([DDGKM, Corollary V.1.54])
A S-path st of length 2 in C is called greedy if s is the left-gcd of st with ∆, or equivalently
if s and t are left-coprime. In general, a S-path s1 · · · sr is called greedy if each subpath
sisi+1 is greedy for i ∈ [[1, r − 1]].

Remark 1.13. Let s1 · · · sr be a S-path in C. This path is greedy if and only if the path
ϕ(s1) · · ·ϕ(sr) is greedy.

Proposition 1.14. ([DDGKM, Proposition V.3.4])
Every morphism f in C is expressed by a unique greedy S-path. This path is called the
greedy normal form of f .

Lemma 1.15. Let s and t be two composable simple morphisms in C. We set d := s ∧ t,
s′ := sd ∈ S and t′ := d−1t ∈ S. We have st = s′t′ in C, and the path s′t′ is greedy.

Proof. First, we have st = sdt′ = s′t′. Then, let p be such that dp = s. We have sdp = ∆,
so p = s′ and

d(s′ ∧ t′) = ds′ ∧ dt′ = s ∧ t = d.

Thus s′ ∧ t′ is trivial by cancellativity, and s′t′ is a greedy path. □

This lemma gives an algorithmic way to compute the greedy normal form of a morphism
in C, provided that we know how to compute the left-gcd of two simple morphisms.

For every category C, one can consider the enveloping groupoid G(C) of C, defined
by formally inverting all morphisms in C (see Lemma A.8). In the case where (C,∆) is
a homogeneous Garside category, the natural functor C → G(C) is an embedding, and
morphisms in G(C) can be conveniently described.

Notation 1.16. For a positive integer m, ∆m(u) denotes the path ∆(u) · · ·∆(ϕm−1(u)).
If m is a negative integer, ∆m(u) denotes the inverse in G(C) of ∆−m(u). Occasionally,
we will write ∆m for ∆m(u) when there is no need to specify the source u explicitly (cf.
[DDGKM, Convention 3.7]).

Proposition-Definition 1.17. ([DDGKM, Definition V.3.17 and Proposition V.3.18])
Let G(C) be the enveloping groupoid of C, and let f be a morphism in G(C). There is unique
way to express f as a path of the form f = ∆ps1 · · · sr such that p ∈ Z, s1 ̸= ∆ and s1 · · · sr
is a greedy path. The path ∆ps1 · · · sr in G(C) is called the left-weighted factorization
of f .

In particular we see that, for every morphism f in G(C). There is a positive integer m
such that ∆mf lies in C.

Definition 1.18. ([DDGKM, Definition V.3.23])
Let f be a morphism in G(C), with left-weighted factorization ∆ps1 · · · sr. The infimum
and supremum of f are defined by inf(f) := p and sup(f) := p+ r, respectively.

In particular we see that an morphism f in G(C) lies in C is and only if inf(f) ⩾ 0.

Definition 1.19. ([DDGKM, Definition VIII.1.1])
Let x and x′ be two endomorphisms in G(C). A morphism f ∈ G(C) conjugates x to x′

if xf = fx′ in G(C). The endomorphism x′ will be denoted by xf . As usual, conjugacy in
G(C) induces an equivalence relation, and we can consider the conjugacy class in G(C)
of the endomorphism x.

Definition 1.20. ([DDGKM, Definition VIII.2.3 and Definition VIII.2.8])
Let x be an endomorphism in G(C), with left-weighted factorization ∆ps1 · · · sr. The initial
factor (resp. final factor) of x is defined as ϕ−p(s1) (resp. sr).

The cycling of x is defined as cyc(x) := xϕ
−p(s1) = ∆ps2 · · · srϕ−p(s1).

The decycling of x is defined as dec(x) = xs
−1
r = sr∆

ps1 . . . sr−1 = ∆pϕp(sr)s1 . . . sr−1.
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Note that the expressions given for cyc(x) and dec(x) are not left-weighted factorizations
a priori.

Definition 1.21. ([BGG07, Definition 3.1])
Let x be an endomorphism in G(C), with left-weighted factorization ∆ps1 . . . sr.
The morphism x is called rigid if the path srϕ

−p(s1) is greedy, or if r = 0.

Lemma 1.22. Let x ∈ G(C) be a rigid endomorphism with left-weighted factorization
∆ps1 · · · sr. The left-weighted factorizations of cyc(x) and dec(x) are given by

cyc(x) = ∆ps2 · · · srϕ−p(s1) and dec(x) = ∆pϕp(sr)s1 . . . sr−1.

Furthermore, the morphisms cyc(x) and dec(x) are also rigid.

Proof. By definition, the path s2 · · · srϕ−p(s1) is greedy, and s2 ̸= ∆ (otherwise the path
s1s2 would not be greedy). Thus the path given for cyc(x) is its left-weighted factorization.
The same reasoning holds for dec(x). Lastly, the fact that s1 · · · sr is a greedy path gives
directly that cyc(x) and dec(x) are both rigid. □

Proposition-Definition 1.23. ([DDGKM, Definition VIII.2.12]
Let x be an endomorphism in G(C). The conjugacy class of x in G(C) admits a well-defined
subset SSS(x) on which each one of inf and sup takes a constant value. Furthermore, for
every conjugate x′ of x in G(C), we have

inf(x′) ⩽ inf(SSS(x)) and sup(x′) ⩾ sup(SSS(x)).

The set SSS(x) is called the super-summit set of x.

Note that SSS(x) must be finite, because there is only a finite number of morphisms in
G(C) with given inf and sup. Also, if x ∈ C, then inf(x) ⩾ 0, and SSS(x) is included in C.

Proposition 1.24. ([DDGKM, Proposition VII.2.16])
Let x be an endomorphism in G(C). One can go from x to an element of SSS(x) by a finite
sequence of cycling, followed by a finite sequence of decycling.

This proposition, combined with Lemma 1.22, shows that a rigid element always lies
inside its own super-summit set.

Proposition 1.25. ([DDGKM, Lemma VIII.2.19 and Proposition VIII.2.20])
Let x be an endomorphism in G(C), and let x′, x′′ be in SSS(x). Let also f be a morphism
in C with x′f = x′′. If f = s1 . . . sr is the greedy normal form of f , then for all i ∈ [[1, r]]
the morphism x′s1···si lies in SSS(x).

Notice that, as ϕ preserves left-weighted factorizations, it stabilizes super-summit sets.
In particular, last proposition also applies to the case where the conjugating element lies
in G(C).

1.3. Periodic elements and divided categories. We fix (C,∆) a homogeneous Garside
category, and G(C) its enveloping groupoid. The study of super-summit sets provides a
solution to the conjugacy problem in G(C) for any two pair of endomorphisms. If we
restrict our attention to the so-called periodic elements of G(C), then we obtain a more
convenient solution to the conjugacy problem through the construction of a particular
Garside category.

Definition 1.26. ([DDGKM, Definition V.3.2])
Let u be an object of G(C), and let p, q ⩾ 1 be integers. An endomorphism ρ of G(C)(u, u)
is called (p, q)-periodic if ρp = ∆q(u).

In particular, we need ∆q to be an endomorphism of u, that is ϕq(u) = u. Note that a
(p, q)-periodic element in G is (np, nq)-periodic for every positive integer n.
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Proposition 1.27. ([DDGKM, Corollary VIII.3.31 and Proposition VIII.3.34])
Let p, q ⩾ 1 be positive integers. Let d be the gcd of p and q, with dp′ = p and dq′ = q. Any
(p, q)-periodic element in G(C) is conjugate to a (p′, q′)-periodic element lying in C.

This proposition allows us to restrict our attention to (p, q)-periodic elements with p and
q coprime. The study of periodic elements in a general Garside context was introduced
in [Bes07], in which the following notion of divided category is introduced. We follow the
exposition given in [DDGKM, Section XIV.1.1].

For m ∈ Z⩾1, define

Dm(∆) := {(u0, . . . , um−1) ∈ Sm | u0 · · ·um−1 = ∆}.
In particular, we require the ui to be composable: the target of ui must by the source of ui+1

for i ∈ [[0,m− 2]]. For every positive integer m, we define an action of the automorphism
ϕ on m-tuples by setting

ϕ.(u0, . . . , um−1) := (u1, . . . , um−1, ϕ(u0)) ∈ Dm(∆).

This not formally an action of the group ⟨ϕ⟩, as ϕk = 1C doesn’t necessarily mean that
ϕk.u = u for all p-tuple u. This is rather an action of the free group Z, which we denote by
ϕ for convenience. Note that this action preserves Dm(∆). Let now m,n be two positive
coprime integers. We define

Dn
m(∆) := {u ∈ Dm(∆) | ϕn.u = u} .

In order to study (p, q)-periodic elements for p and q coprime, we are going to define

a categorical presentation using the sets Dkq
kp(∆) with k ∈ {1, 2, 3} (see Appendix A.1 for

reminders on categorical presentations).
The subcategory Cϕq

introduced in the end of Section 1.1 is useful for giving a more

efficient description of the sets Dkq
kp(∆). Those sets are a priori described by kp parameters

lying in C, but since p and q are coprime, we show that they depend only on k parameters
lying in Cϕq

.

Lemma 1.28. Let p, q be coprime positive integers with p > 1. There is a well-defined
integer η such that, for all f := (f0, . . . , fp−1) ∈ Cp, we have

ϕq.f = f ⇔ f0 ∈ Cϕq
and ∀i ∈ [[1, p− 1]], fi = ϕiη(f0).

In particular, f depends only on f0.

Proof. We begin with some arithmetic results. Let q = kp + r be the Euclidean division
of q by p (we have r > 0 since p ̸= 1). For n ∈ Z⩾1, let nr = anp + bn be the Euclidean
division of nr by p. We have

∀n ⩾ 1, bn+1 =

{
bn + r if bn < p− r

bn + r − p if bn ⩾ p− r
and an+1 =

{
an if bn < p− r

an + 1 if bn ⩾ p− r

and bn ∈ [[0, p− 1]] is equal to nr modulo p. Consider now the sequence knr, defined by

knr =

{
k if bn < p− r

k + 1 if bn ⩾ p− r
= k + an+1 − an, ∀n ⩾ 1.

We set

hnr =
n−1∑
i=0

kir = nk + an − a0 = nk + an.

We have hnrp = −bn modulo q. Indeed, as pk + r = q, we have

phnr = p(nk + an) = −nr + pan = −bn modulo q
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As p and q are coprime, there is a smallest m ∈ [[1, p−1]] such that bm = 1 (that is, mr = 1
modulo [p]). We have, for all n ⩾ 1

bnhmr = −phnrhmr = hnrbm = hnr modulo q

We define η = −hmr, and we have ∀n ⩾ 0, bnη = −hnr.
Let now f := (f0, . . . , fp−1) be a p-tuple of morphisms in C. For the sake of readability,

the index i of fi is seen as an element of Z/pZ, so that fi = fi+p, fr = fq and fnr = fbn by
definition. We have

ϕq.f = (ϕk(fr), . . . , ϕ
k(fp−1), ϕ

k+1(f0), . . . , ϕ
k+1(fr−1)).

As p and q are coprime, for every i ∈ [[0, p− 1]], there is a unique ni ∈ [[0, p− 1]] such that
bni = i. We obtain

ϕq.f = f ⇔ ∀i ∈ [[0, p− 1]], fi = fnir = ϕknir(f(ni+1)r) = ϕknir(fi+r).

By an immediate induction, we get ϕq.f = f ⇔ ∀n > 0, f0 = ϕhnr(fnr).
If ϕq.f = f , then we have in particular

f0 = ϕhpr(f0) = ϕpk+ap(f0) = ϕpk+r(f0) = ϕq(f0).

Also, since −hnr ≡ bnη modulo q, we deduce that

∀i ∈ [[0, p− 1]], fi = fnir = ϕ−hnir(f0) = ϕbniη(f0) = ϕiη(f0).

Conversely, if f is such that ϕq(f0) and fi = ϕiη(f0) for all i ∈ [[1, p− 1]], then for n > 0,
we have f0 = ϕ−bnη(fbn) = ϕhnr(fnr), which shows that ϕq.f = f . □

Remark 1.29. In the above proof, we saw that η = −mk − am, where q = pk + r is the
Euclidean division of q by p, and m ∈ [[0, p−1]] is such that mr = amp+1 is the Euclidean
division of mr by p. In particular we see that η depends only on p and q.

The above result is also vacuously true for p = 1. From now on, we fix the integer η
associated to p and q by Lemma 1.28 (we fix η = 1 when p = 1).

Proposition 1.30. Let p, q be coprime positive integers.

(a) The map (u0, . . . , up−1) 7→ u0 induces a bijection between Dq
p(∆) and the set{

u0 ∈ Sϕq | u0ϕη(u0) . . . ϕ(p−1)η(u0) = ∆
}
.

(b) The map (a0, b0, . . . , ap−1, bp−1) 7→ (a0, b0) induces a bijection between D2q
2p(∆) and the

set {(a, b) ∈ (Sϕq
)2 | ab ∈ Dq

p(∆)}.
(c) The map (x0, y0, z0, . . . , xp−1, yp−1, zp−1) 7→ (x0, y0, z0) induces a bijection between

D3q
3p(∆) and the set {(x, y, z) ∈ (Sϕq

)3 | xyz ∈ Dq
p(∆)}.

Proof. We first consider the case where p = 1. We have

Dq
1(∆) = {u0 ∈ S | u0 = ∆ and ϕq(u0) = u0}.

D2q
2 (∆) = {(a, b) ∈ S2 | ab = ∆ and (a, b) = (ϕq(a), ϕq(b))}

= {(a, b) ∈ (Sϕq
)2 | ab = ∆}.

By Lemma 1.10, this set is equal to {(a, b) ∈ (Sϕq
)2 | ab ∈ Dq

1(∆)}. The same reasoning

applies to D3q
3 (∆).

We now assume that p > 1. The first claim is a direct consequence of Lemma 1.28 and
the fact that u0 · · ·up−1 = ∆. For the second claim, let (a0, . . . , bp−1) be a 2p-tuple. This
2p-tuple is ϕ2q-invariant if and only if the two p-tuples (a0, . . . , ap−1) and (b0, . . . , bp−1) are
both ϕq-invariant. By Lemma 1.28, this is equivalent to ϕq(a0) = a0, ϕ

q(b0) = b0 and

(a0, b0, . . . , ap−1, bp−1) = (a0, b0, ϕ
η(a0), . . . , ϕ

(p−1)η(b0))
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which shows that the map (a0, b0, . . . , ap−1, bp−1) 7→ (a0, b0) is injective and maps D2q
2p(∆)

into the considered set.
Conversely, for (a, b) in the considered set, the 2p-tuple (a0, b0, ϕ

η(a0), . . . , ϕ
(p−1)η(b0)) lies

inside D2q
2p(∆) and gives the preimage of (a, b). Again, the same reasoning applies to the

third claim. □

From now on, we will use the alternative descriptions of Dq
p(∆), D2q

2p(∆) and D3q
3p(∆)

given by Proposition 1.30.

Dq
p(∆) ≃

{
u ∈ Sϕq | uϕη(u) · · ·ϕ(p−1)η(u) = ∆

}
.

D2q
2p(∆) ≃

{
(a, b) ∈ (Sϕq

)2 | ab ∈ Dq
p(∆)

}
.

D3q
3p(∆) ≃

{
(x, y, z) ∈ (Sϕq

)3 | xyz ∈ Dq
p(∆)

}
.

Under these descriptions, the action of ϕ is given by

∀u ∈ Dq
p(∆), ϕ.u = ϕη(u).

∀a, b ∈ D2q
2p(∆), ϕ.(a, b) = (b, ϕη(a)).

∀x, y, z ∈ D3q
3p(∆), ϕ.(x, y, z) = (y, z, ϕη(x)).

This description of the action of ϕ also holds for p = 1 with η = 1.
We are now going to construct an oriented graph Sq

p , which will serve as generators for
our categorical presentation (see Appendix A.1 for definitions regarding oriented graphs).

Definition 1.31. Let p, q be coprime positive integers. We denote by Sq
p the following

oriented graph

- The objects are the elements of Dq
p(∆).

- The arrows are the elements of D2q
2p(∆).

- For (a, b) ∈ D2q
2p(∆), the source (resp. the target) of (a, b) is given by ab (resp. bϕη(a)).

We call Sq
p the graph of simples (for the couple (p, q)).

Note that, for (a, b) ∈ Sq
p , the source and target of (a, b) are objects of Sq

p . Indeed we

have (a, b) ∈ D2q
2p(∆) and ϕ.(a, b) = (b, ϕη(a)) ∈ D2q

2p(∆), so both ab and bϕη(a) lie in Dq
p(∆)

by Proposition 1.30.

Lemma 1.32. The action of ϕ2 on D2q
2p(∆) induces an automorphism ϕp of the graph Sq

p ,

with (ϕp)
q = 1Sq

p
. For an object u of Sq

p , we have ϕp(u) = ϕ.u.

Proof. By definition, we have ϕ2.(a, b) = (ϕη(a), ϕη(b)) for (a, b) ∈ D2q
2p(∆). The source and

target of ϕ2.(a, b) are ϕη(ab) = ϕ.(ab) and ϕη.(bϕη(a)), respectively. As both ϕ and ϕ2 are

automorphisms of C, they induce bijections on the sets Dq
p(∆) and D2q

2p(∆), respectively.

The fact that (ϕp)
q = 1Sq

p
comes from the definition of the sets Dq

p(∆) and D2q
2p(∆). □

We now endow the graph Sq
p with a set of relations Rq

p. The set Rq
p is in bijection with

D3q
3p(∆). A 3p-tuple (x, y, z) in D3q

3p(∆) induces the relation (x, yz)(y, zϕη(x)) = (xy, z)

between elements of D2q
2p(∆).

Definition 1.33. The presented category Cq
p := ⟨Sq

p | Rq
p⟩+ is called the category of

(p, q)-periodic elements of C. The enveloping groupoid of Cq
p will be denoted by Gq

p.

Lemma 1.34. The function ℓ defined on arrows of Sq
p by ℓ(a, b) := ℓ(a) extends to a length

functor on Cq
p, making Cq

p into a homogeneous category.
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Proof. First, the function ℓ extends to Cq
p as it is compatible with Rq

p. Indeed, for (x, y, z) ∈
D3q

3p(∆), we see that ℓ(xy, z) = ℓ(xy) = ℓ(x)+ℓ(y) = ℓ(x, yz)+ℓ(y, zϕη(x)). We then have to

show that Cq
p is generated by elements of positive length. As Cq

p is generated (by definition)
by Sq

p , we have to show that the elements of length 0 in Sq
p are trivial in Cq

p . By definition
of ℓ, the only elements of Sq

p of length 0 are elements of the form (1, u) for u ∈ Dq
p(∆). We

claim that the element (1, u) ∈ Sq
p is the identity morphism of the object u in Cq

p . The source
and target of (1, u) are both u. Furthermore, for (a, b) ∈ Sq

p with source u, the element

(1, a, b) ∈ D3q
3p(∆) expresses the relation (1, u)(a, b) = (a, b). Similarly, for (d, e) ∈ Sq

p with

target u, the element (d, 1, e) in D3q
3p(∆) expresses the relation (d, e)(1, u) = (d, e). Thus

(1, u) represents the morphism 1u in Cq
p . □

Theorem 1.35. ([DDGKM, Proposition XIV.1.5] and [DDGKM, Proposition VII.4.2])
The category Cq

p is cancellative. Furthermore, defining

∀u ∈ Ob(Cq
p), ∆p(u) := (u, 1) ∈ Cq

p(u, ϕp(u))

induces a Garside map ∆p on Cq
p. The simple morphisms associated to ∆p are exactly the

image in Cq
p of the graph Sq

p .

Lemma 1.36. The automorphism ϕp of Sq
p extends to an automorphism of Cq

p. Moreover,
ϕp is the automorphism induced by the Garside map ∆p.

Proof. As we already know that ϕp is an automorphism of Sq
p , we only have to show

that it is compatible with the set of relations. Let (x, y, z) ∈ D3q
3p(∆), the element

(ϕη(x), ϕη(y), ϕη(z)) of D3q
3p(∆) induces the relation

(ϕη(x), ϕη(y)ϕη(z))(ϕη(y), ϕη(x)ϕ2η(z)) = (ϕη(x)ϕη(y), ϕη(z))

⇔(ϕη(x), ϕη(yz))(ϕη(y), ϕη(xϕη(z))) = (ϕη(xy), ϕη(z))

⇔ϕp(x, yz)ϕp(y, zϕ
η(x)) = ϕp(xy, z)

which proves that ϕp is compatible with Rq
p. Now, in order to prove that ϕp is indeed the

automorphism induced by the Garside map ∆p, we only need to show that ϕp(s) = s for

any simple morphism s. Let s = (a, b) ∈ Sq
p , the element (a, b, 1) in D3q

3p(∆) expresses the

relation (a, b)(b, ϕη(a)) = (ab, 1) = ∆p(ab), which proves that (a, b) = (b, ϕη(a)). From this
we deduce s = (ϕη(a), ϕη(b)) = ϕp(a, b) as claimed. □

Definition 1.37. ([Bes15, Definition B.23])
The map defined on Sq

p by (a, b) 7→ a induces a functor πp : Cq
p → C, which is called the

collapse functor.

Lemma 1.38. Let u be an object of Cq
p, and let x := πp(u) be the source of u in C. The

collapse functor restricts to an isomorphism of posets

(Sq
p(u,−),⪯) ≃ ({s ∈ Sϕq | s ⪯ u},⪯) ⊂ Sϕq

(x,−) ⊂ S(x,−).

In particular, if s := (a, b) and s′ := (a′, b′) are two simples in Cq
p with source u, then s ⪯ s′

in Cq
p if and only if a ⪯ a′ in C.

Proof. Let π denote the restriction of the collapse functor πp to the set Sq
p(u,−). For

s := (a, b) ∈ Sq
p(u,−), we have ab = u by definition, so a ⪯ u and ϕq(a) = a. Conversely,

if a ⪯ u is such that ϕq(a) = a, then there is a unique b ∈ S such that ab = u. We have
ϕq(b) = b by Lemma 1.10, and the simple morphism (a, b) is then the unique preimage by
π of a in Sq

p(u,−).
Let now s := (a, b) and s′ := (a′, b′) be two elements of Sq

p(u,−). If s ⪯ s′, then there

is some (x, y, z) ∈ D3q
3p(∆) such that (x, yz) = (a, b) and (xy, z) = (a′, b′). We have in

particular ay = xy = a′ and a ⪯ a′. Conversely, if a ⪯ a′, there is some y ∈ S such that
ay = a′. Again we have ϕq(y) = y by Lemma 1.10, and the relation induced by (a, y, b)
then gives s ⪯ s′. □
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Corollary 1.39. Let s := (a, b) and t := (α, β) be two composable simple morphisms in
Cq
p. The greedy normal form of the path st in Cq

p is given by

st = (ad, d−1b)(d−1α, βϕη(d)))

where d = α ∧ b. In particular the path st is greedy if and only if b and α are coprime.

Proof. The composability of s and t is equivalent to αβ = bϕη(a). By Lemma 1.38, we
have t ∧ s = (α, β) ∧ (b, ϕη(a)) = (d, e), where e is defined by de = αβ. We have

st = (a, b)(α, β) = (a, b)(d, e)(d−1α, β)

= (ad, d−1b)(d−1α, βϕη(d)).

This last term is the greedy normal form of st because of Lemma 1.15. □

Theorem 1.40. ([DDGKM, Proposition XIV.1.8])

(1) Let u be an object of Gq
p. The element πp(∆

q
p(u)) is a (p, q)-periodic element in G(C).

(2) Every (p, q)-regular element of G(C) is conjugate to an element of the form πp(∆
q
p(u)).

(3) The collapse functor induces a functor Gq
p → G(C), which in turn induces a group

isomorphism between Gq
p(u, u) and the centralizer of πp(∆

q
p(u)) in G(πp(u), πp(u)).

1.3.1. The case p = 1. If p = 1, then the graph Sq
p is simply the subgraph Sϕq

of S. Indeed
we have

Dq
1(∆) = {u ∈ Sϕq | u = ∆} = {∆(u) ∈ S | ϕq(∆(u)) = ∆(ϕq(u)) = ∆(u)}

≃ {u ∈ Ob(C) | ϕq(u) = u}.

Dq
2(∆) = {(a, b) ∈ (Sϕq

)2 | ab = ∆}

= {(a, a) ∈ (Sϕq
)2} ≃ Sϕq

.

Let (x, y, z) be in D3q
3 (∆). We have z = xy, thus (x, y, z) expresses the relation x.y = (xy)

between elements of Sϕq
.

By [DDGKM, Proposition VI.1.11], the category Cq
1 is simply the subcategory Cϕq

. The
Garside map of Theorem 1.35 is then the restriction to Cϕq

of the Garside map of C. The
same goes for the automorphism ϕ1.

The collapse functor π1 sends a ∈ Sϕq
to a ∈ S: it is the inclusion Cϕq

↪→ C. Lemma
1.38 expresses that, for an object u of Cϕq

, the inclusion Sϕq
(u,−) ⊂ S(u,−) is a morphism

of lattices, which is also a consequence of Lemma 1.10. Corollary 1.39 ensures that the
greedy normal form of a path in Cϕq

is the same as its greedy normal form in C.
Lastly, Theorem 1.40 expresses that every (1, q)-periodic element of C is conjugate to

some ∆q(u), and that G(C)ϕq
(u, u) is the centralizer of ∆q(u) inside of G(C)(u, u).

2. Complex reflection groups, braid groups and braid categories

2.1. Reminders on complex reflection groups and their braid groups.

2.1.1. Definitions, basic invariants. We follow the exposition of [LT09]. Let V be a finite
dimensional complex vector space. An nontrivial element s ∈ GL(V ) is called a reflection
if it pointwise fixes some hyperplane of V and has finite order. The hyperplane Ker(s−Id) is
then called the reflecting hyperplane of s. A subgroup W < GL(V ) is called a complex
reflection group if it is finite and generated by reflections of V . The integer n = dimV
is the rank of W .

A complex reflection group W < GL(V ) is irreducible if there are no nontrivial W -
stable subspaces in V . It is well-known that every complex reflection group decomposes as
a product of irreducible complex reflection groups. This allows us to restrict our attention
to irreducible groups. These groups were classified by Shephard and Todd in [ST54], with
on the one hand an infinite series of monomial matrices (groups denoted by G(de, e, n) for
integers d, e, n), and on the other hand a list of 34 exceptional cases, labeled G4 to G37.
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An irreducible complex reflection group of rank n is called well-generated if it can
be generated by a set of n reflections. An irreducible group of rank n which is not well-
generated is badly-generated . Such a group can always be generated by n+1 reflections.

From now on we fix W < GL(V ) an irreducible complex reflection group of rank n. The
action ofW on V extends to an action ofW on the algebra S of polynomial functions on V .
By the Chevalley-Shephard-Todd theorem ([LT09, Theorem 3.20]), the algebra SW of W -
invariant elements of S is a polynomial algebra in n variables. A n-tuple f = (f1, . . . , fn)
of homogeneous algebraically independent generators of SW is called a system of basic
invariants. The degrees di of the fi doesn’t depend on the choice of f . They are the
degrees of the reflection group W .

Likewise, one can define the codegrees d∗1, . . . , d
∗
n of W by considering the module of

invariant derivations on the algebra S ([Bes15, Definition 1.2]).

2.1.2. Braid groups, braided reflections. We consider the subset X ⊂ V consisting of points
not belonging to any of the reflecting hyperplanes associated to reflections of W . By
Steinberg’s Theorem ([LT09, Theorem 9.44]), the action of W on X is free and induces a
covering map from X to X/W . We fix a basepoint x0 ∈ X and we set

P (W ) := π1(X,x0) and B(W ) := π1(X/W,W.x0)

the pure braid group of W and the braid group of W , respectively. The covering map
X ↠ X/W induces a short exact sequence

1 // P (W ) // B(W ) // W // 1 .

Note that, as X is path connected, a change of basepoint x0 → x1 yields a (non canonical)
isomorphism of short exact sequences

1 // P (W ) //

≃
��

B(W )

≃
��

// W // 1

1 // π1(X,x1) // π1(X/W,W.x1) // W // 1.

Let f := (f1, . . . , fn) be a system of basic invariants. The isomorphism between SW

and C[f1, . . . , fn] induces in turn an algebraic isomorphism V/W ≃ Cn. Let H denote
the image in V/W of the reunion of the reflecting hyperplanes of W , it is an algebraic
hypersurface of V/W ≃ Cn. Since the braid group B(W ) is defined as the fundamental
group of the complement ofH in V/W , it is generated by particular elements called braided
reflections (around the irreducible divisors of H).

We quickly recall from [BMR98, Appendix 1] the definition of braided reflections, as it
will be useful in Section 3.4. Let H be a reflecting hyperplane of W , and let D ⊂ H be the
image of H in V/W .

Definition 2.1. A path from x0 to D in X/W is a path γ : [0, 1] → V/W such that

γ(0) = x0, γ(1) ∈ D̃ and γ(t) ∈ X/W for t < 1. Two paths γ, γ′ from x0 to D in X/W are
D-homotopic if there exist a homotopy T : [0, 1]× [0, 1] → V/W from γ to γ′ such that

• For all t ∈ [0, 1[ and u ∈ [0, 1] T (t, u) ∈ X/W .

• For all u ∈ [0, 1], T (0, u) = x0 and T (1, u) ∈ D̃.

The D-homotopy class of γ is denoted by [γ].

Let γ be a path from x0 to D in X/W . Let also U be a connected open neighborhood

of γ(1) in X/W ∪ D̃ such that U ∩ X/W has a fundamental group free of rank 1. Let
u ∈ [0, 1[ be such that γ(t) ∈ U for t ⩾ u. The orientation of U ∩X allows us to choose a
“positive” generator λ of π1(U ∩X/W, γ(u)).

We set γu(t) := γ(ut) for t ∈ [0, 1] and ργ,λ := γu ∗ λ ∗ γ−1
u . The homotopy class of ργ,λ

depends only on [γ] and is denoted by ρ[γ]. It is by definition a braided reflection of B(W )
(around the divisor D). The image of ρ[γ] inside W is a reflection with hyperplane H.
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Proposition 2.2. ([BMR98, Appendix 1])
All meridians around D form a conjugacy class of B(W ). In particular the set of all braided
reflections is stable under conjugacy in B(W ).

Remark 2.3. Let x0 → x1 be a change of basepoint. The induced isomorphism between
B(W ) and π1(X/W,W.x1) maps braided reflections to braided reflections.

Lastly, we give the definition of a particular element in B(W ), which plays a particular
role when considering centers and centralizers.

Definition 2.4. ([BMR98, Notation 2.3])
The full-twist is the homotopy class in B(W ) of the loop

γπ : [0, 1] −→ X/W
t 7−→ exp(2iπt)x0.

It lies inside P (W ) ∩ Z(B(W )).

2.1.3. Regular elements, regular braids. Let d be a positive integer. We denote by µd the
group of d-th roots of unity in C. We also consider µ∗d the subgroup of µd consisting of

primitive d-th roots of unity, and ζd := exp(2iπd ) ∈ µ∗d.

Definition 2.5. ([LT09, Definition 11.21])
Let ζ be a root of unity in C. An element g ∈ W is called ζ-regular if it admits a ζ-
eigenvector lying in X. An integer d is regular for W if there is a ζd-regular element g
in W .

If g ∈ W is a ζ-regular element, then for every integer k, gk is ζkd -regular. Thus, if g is
ζ-regular for some ζ ∈ µ∗d, then d is a regular integer for W . It is known that ζ-regular
elements (should they exist) form a conjugacy class in W .

Theorem 2.6. ([LT09, Theorem 11.24])
Let g ∈ W be a ζ-regular element for some ζ ∈ µ∗d. The centralizer CW (g) of g in W acts
on the eigenspace Ker(g− ζ Id) as a complex reflection group. Its degrees (resp. codegrees)
coincide with those degrees (resp. codegrees) of W which are divisible by d.

Let g ∈W be a ζd-regular element, and letWg := CW (g). It is possible to study the braid
group B(Wg) by embedding it inside B(W ). Let Vg denote the eigenspace Ker(g − ζdId)
on which Wg acts as a reflection group. Let also Xg denote the space of regular vectors
inside Vg. By [LT09, Theorem 11.33], we have Xg = X ∩ Vg.

The scalar action of C∗ on V induces in particular an action of µd on V/W . By [Bes15,
Theorem 1.9], the embedding Vg → V induces two homeomorphisms Vg/Wg ≃ (V/W )µd

and Xg/Wg ≃ (X/W )µd . In particular B(Wg) identifies with the fundamental group of
(X/W )µd . It was shown in [Bes15, Theorem 12.4] and [Gar23, Theorem 1.2] that the
fundamental group (X/W )µd can itself be identified with the centralizer in B(W ) of any
d-th root of the full-twist. Such d-th roots of the full-twist will be called d-regular braids.

Example 2.7. A guiding example is the case of the groups G31 and G37. The degrees (resp.
codegrees) of G37 are

2 8 12 14 18 20 24 30
0 6 10 12 16 18 22 28

The integer 4 is regular for G37. The centralizer of a i = ζ4-regular element in G37 is
isomorphic to G31. Its degrees (resp. codegrees) are 8, 12, 20, 24 (resp. 0, 12, 16, 28). Note
that 4 is the gcd of the degrees of G37 which it divides.

Lemma 2.8. Let W < GLn(R) ⊂ GLn(C) be a real reflection group which contains − Id
and for which 4 is regular. If g ∈W is a i-regular element and r is a reflection of W , then
r and rg commute.
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Proof. First, the element − Id is a −1-regular element in W . Since − Id is central in W ,
and since all −1-regular elements in W are conjugate to − Id, we get that − Id is in fact
the only −1-regular element in W . Now, since g is i-regular, g2 is i2 = −1-regular, hence
equal to − Id.

We assume that r ̸= rg (otherwise our claim is immediate). We fix ⟨−,−⟩ a W -invariant
scalar product on Rn. Let α be a root for r (that is, a generator of Ker(r− Id)⊥). We have

g2rg−2 = r ⇒ grg−1 = g−1rg.

Thus g−1(α) and g(α) are two roots of the same reflection rg. Let α ∈ R such that
g−1(α) = λg(α). We have α = λg2(α) = −λα and λ = −1,thus

⟨g(α), α⟩ =
〈
α, g−1(α)

〉
= ⟨α,−g(α)⟩ = −⟨g(α), α⟩ .

The two roots α and g(α) are then orthogonal for ⟨−,−⟩ and r and rg commute. □

This lemma applies to the case of G31 seen inside G37 as the centralizer of a i-regular
element. Indeed, G37 is the complexified version of the exceptional Coxeter group E8,
which contains − Id.

2.2. Dual braid monoid for well-generated groups. Let W < GL(V ) be a well-
generated complex reflection group of rank n. In [Bes03] and [Bes15], Bessis defines a
particular Garside monoid, the dual braid monoid , which admits the braid group B(W )
as its group of fraction. This monoid is the first step from which it is possible to define a
Garside category suitable for studying centralizers of regular braids in B(W ).

Here we consider the combinatorial definition of the dual braid monoid as an interval
monoid. We will be discussing the topological definition of the dual braid monoid in the
next section. We follow [Bes15, Section 8].

Let R be the set of reflections ofW . We have R = R−1, and R generatesW by definition.
For w ∈ W , one can define ℓR(w) to be the minimal length of a decomposition of w as a
product of reflections. Because the set R is globally invariant under conjugation, the value
of ℓR(w) depends only on the conjugacy class of w inW . The function ℓR induces relations
⪯ and ⪰ on W defined by

∀w, v ∈W, v ⪯ w ⇔ ℓR(v) + ℓR(v
−1w) = ℓR(w),

∀w, v ∈W, w ⪰ v ⇔ ℓR(wv
−1) + ℓR(v) = ℓR(w).

Let v, w be in W . Since ℓR takes constant values on conjugacy classes in W , we get that
v ⪯ w ⇔ w ⪰ v. Thus we will always work with ⪯ and only consider ⪰ for readability
purposes.

As W is well-generated, we know that the highest degree h of W is regular for W (see
the proof of [Bes15, Theorem 2.4]). A Coxeter element of W is then an element c ∈ W
which is regular for the eigenvalue ζh := exp(2iπh ). Let c be a Coxeter element in W . We
define

Rc := {r ∈ R | r ⪯ c} and Ic := [1, c]⪯ = {w ∈W | w ⪯ c}
We also consider formal copies R ⊂ I of Rc ⊂ Ic (their elements will be denoted in bold

font). The interval monoid associated to R and c is then defined by the presentation:

M(c) := ⟨I | st = u ⇔ (st = u and ℓR(s) + ℓR(t) = ℓR(u))⟩
We know that (Ic,⪯) is a lattice ([Bes15, Lemma 8.6]). We will denote s ∧ t (resp. s ∨ t)
the gcd (resp. lcm) of s and t in Ic. We do not have to distinguish between left- and right-
gcd and lcm since all simple elements are balanced (their left- and right-divisor are the
same).

Let c and c′ be two Coxeter elements of W . Since they are regular elements of W for
the same eigenvalue ζh, there is some w ∈ W such that wcw−1 = c′. Since ℓR is invariant
under conjugacy, one readily sees that conjugation by w induces an isomorphism between
the two intervals Ic and Ic′ . In particular we have M(c) ≃M(c′).
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Theorem 2.9. ([Bes15, Theorem 8.2])
The monoid M(c) is a homogeneous Garside monoid, with Garside element ∆ := c and
set of simples I. The atoms of M(c) are the elements of R.

The Hurwitz relations with respect to W and c are the formal relations of the form

rr′ = r′r′′

where r, r′, r′′ ∈ Rc are such that r ̸= r′, rr′ ∈ Ic and rr′ = r′r′′ holds in W . We know
from [Bes15, Lemma 8.8] that the monoid M(c) admits a particular presentation with R
as a set of generators, endowed with the Hurwitz relations.

Remark 2.10. We can be a little less specific and say that M(c) (and G(c)) is presented by
relations of the form

ss′ = rr′

with s, s′, r, r′ ∈ R, and ss′ ∈ Ic. That is M(c) is presented by its atoms and the equality
between decompositions of simple elements of length 2. It is this precise rephrasing which
we will show holds in Springer categories (see Theorem 3.27).

Lemma 2.11. For a ∈ I, we have a2 ∈ I if and only if a = 1.

Proof. If a2 ∈ I, the relation aa = a2 must be a defining relation of M , so we must have
2ℓR(a) = ℓR(a

2). If a ̸= 1, then let s ∈ Rc be a divisor of a with sa′ = a and a′′s = a. We
have a2 = a′′ssa = a′′s2a, so ℓR(a

2) ⩽ ℓR(a
′′) + ℓR(a

′) + 1 = 2ℓR(a)− 1, which contradicts
2ℓR(a) = ℓR(a

2). □

Proposition 2.12. Let a,a′ be in I. If the product aa′ is also in I, then aa′ = a∨ a′ and
a ∧ a′ is trivial.

Proof. First, note that in Ic, we have aa′ = a′aa
′
= aa′a. Now, because ℓR is invariant

under conjugation, we have

ℓR(aa
′) = ℓR(a) + ℓR(a

′) = ℓR(a
′) + ℓR

(
aa

′
)
= ℓR

(
aa′

)
+ ℓR(a)

This means that aa′ ⪰ aa
′
and aa′ ⪯ aa′: we have aa

′
, aa′ ∈ Ic, and aa′ is a common

left and right multiple of a and a′. Now let ab = a′b′ be the right-lcm of a and a′. By
definition, there is some x ∈ I such that bx = a′ and b′x = aa

′
. In particular, we have

a′ ⪰ x, aa
′ ⪰ x and x ⪯ aa

′
since every element is balanced. So aa′ admits x2 as a factor

and x2 is a simple. By Lemma 2.11, x = 1, a′ = b, b′ = aa
′
and aa′ = a ∨ a′.

If x is a common divisor of a and a′, then we have a ⪰ x and x ⪯ a′. We get that x2 is
a simple element in M(c), it must then be trivial. □

Remark 2.13. By definition of an interval monoid, there is a natural bijection between the
simples of M(c) and the interval Ic = ([1, c],⪯R) in W . This bijection induces in turn a
bijection between the sets Dm(∆) and the sets Dm(c), defined by

Dm(c) :=

{
(u0, . . . , up−1) ∈W p

∣∣∣∣∣
{
u0 · · ·up−1 = c

ℓR(u0) + · · ·+ ℓR(up−1) = ℓR(c)

}
.

The automorphism ϕ ofM(c) acts on Dm(c) by ϕ.(u0, . . . , up−1) := (u1, . . . , up−1, u
c
0). The

bijection between Dm(∆) and Dm(c) restricts to a bijection between Dn
m(∆) and

Dn
m(c) := {(u0, . . . , up−1) ∈ Dm(c) | ϕq.(u0, . . . , up−1) = (u0, . . . , up−1)}

The results of Proposition 1.30 also allow for an alternative description of the sets Dm
n (c).
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2.3. Lyashko-Looijenga map, cyclic labels. Here we recall the preliminaries which are
necessary to construct both the dual braid monoid from a topological point of view, and
the Springer category associated to a regular number. Most of this section comes from
[Bes15, Section 5, 6].

Let again W < GL(V ) be an irreducible well-generated complex reflection group with
highest degree h, together with a system of basic invariants f such that the discriminant
has the following form:

∆f = Xn
n + α2X

n−2
n + · · ·+ αn

where αi ∈ C[X1, · · · , Xn−1] (such a system always exists for well-generated groups by
[Bes15, Theorem 2.4 and Section 2.5]).

The system of basic invariants f provides an isomorphism V/W ≃ Cn, which sends the
orbit W.v of v ∈ V to (f1(v), · · · , fn(v)) ∈ Cn. We denote vi := fi(v).

Definition 2.14. ([Bes15, Definition 7.23]) Let x = W.v ∈ V/W . The multiset LL(x) is
defined as the solutions in T of the polynomial

∆f (v1, · · · , vn−1, T + vn) ∈ C[T ]

It is by definition an element of En := Cn/Sn. The map LL : V/W → En is called the
(extended) Lyashko-Looijenga morphism.

Remark 2.15. The original approach in [Bes15] was to study a slightly different application,
denoted by LL (cf [Bes15, Definition 5.1]). Bessis then suggested that the application LL
was in fact a far better choice.

For x ∈ V/W , we have x ∈ X/W ⇔ 0 /∈ LL(x). By definition this is equivalent to
LL(x) ∈ E◦

n := (C∗)n/Sn. We endow V/W with the quotient of the scalar action of C on
V . We also endow the space of configurations En with the scalar action of C.
Lemma 2.16. ([Bes15, Lemma 11.1])
Let x ∈ V/W and let λ ∈ C∗. We have LL(λx) = λhLL(x).

The fat basepoint for X/W is then defined as the following set

U := {x ∈ V/W | LL(x) ∩ iR⩾0 = ∅}.
That is, x ∈ U if no point of LL(x) is directly above 0. This subset of X/W is open and
contractible ([Bes15, Lemma 6.3]). It can be used as a fat basepoint for defining the braid
group of W ([Bes15, Definition 6.4]). From now on we consider B(W ) := π1(X/W,U).

Let x ∈ X/W , the points of LL(x) are ordered clockwise starting from “right after
noon” (that is, points lying on the half-line iR⩾0 will be at the end). Points with the same
argument are ordered by increasing module. If x ∈ V/W , the sequence (x1, . . . , xk) of
points of LL(x) ordered in this way is called the cyclic support of x ([Bes15, Definition
11.8]).

Remark 2.17. The set of points x ∈ U such that the points in the cyclic support of x all have
distinct arguments is dense in X/W . The ordering we choose allows us to define univalent
desingularization, which preserves the ordering of the points of the cyclic support.

Definition 2.18. ([Bes15, Definition 11.24])
A circular semitunnel is a couple T = (x, L) ∈ U × [0, 2πh ]. The path γT associated with
a semitunnel T is the path

γT : [0, 1] −→ X/W
t 7−→ eitLx

We say that T is a circular tunnel if it satisfies the additional condition γT (1) ∈ U .
Let T := (x, L) be a circular (semi)tunnel. Since LL is homogeneous of degree h, the

path LL ◦ γT corresponds to a continuous rotation of angle hL. Since the path γT starts
and ends in U , it induces a well defined element in B(W ) = π1(X/W,U). From now on we
amalgamate a circular tunnel T with the path γT it induces in X/W .
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Theorem 2.19. ([Bes15, Proposition 8.5 and Lemma 11.10])

(i) The homotopy class ∆ of the circular tunnel T = (x, 2πh ) does not depend on x ∈ U .
(ii) The projection c of ∆ in W is a Coxeter element of W .
(iii) Consider S the set of homotopy classes of circular tunnels in B(W ). It is endowed

with the relation ⪯ defined by s ⪯ s′ if s−1s′ is homotopic to a circular tunnel. The
projection map B(W ) ↠W induces an isomorphism of posets (S,⪯) ≃ (Ic,⪯). This
isomorphism induces in turn an isomorphism B(W ) ≃ G(c).

From now on we fix the Coxeter element c so that we have the isomorphism G(c) ≃
B(W ) induced by the above theorem. By [Bes15, Lemma 6.13], the element ∆h in B(W )
represents the full-twist.

Remark 2.20. In [Bes15], the notion of circular tunnel is preceded by the notion of tunnel
(cf [Bes15, Definition 6.6]). However, [Bes15, Lemma 11.10] and [Bes15, Corollary 6.18]
show that the two notion are actually synonymous, in the sense that an element of B(W )
is represented by a circular tunnel if and only if it is represented by a tunnel.

The notion of circular tunnel allows us to define the notion of cyclic label, which will
prove crucial in the study of (X/W )µd . Let x ∈ U , and let (x1, . . . , xk) be the cyclic support
of x. We assume that all the xi have distinct arguments. There is a minimal θ ∈ R>0 such
that eiθx /∈ U . The head of x is defined as the element c1 of B(W ) represented by the
circular tunnel T = (x, θ + ε), which doesn’t depend on ε > 0 small enough. We can then

consider the head of γT (1) = ei(θ+ε)tx and so on, until all the points of the cyclic support
of x have been labeled.

Definition 2.21. ([Bes15, Definition 11.9])
Let x ∈ U be such that all the points in LL(x) have distinct arguments. The sequence
(s1, · · · , sk) defined above is the cyclic label of x, denoted by clbl(x).
If different points in the cyclic support of x have the same argument, we define clbl(x) as
the cyclic label of some desingularization of x, as in Remark 2.17.

Since the elements of clbl(x) are defined as circular tunnels, they are simple elements
in M(c). Thus we can see them as elements of Ic ⊂ W . Theorem 2.19 proves that, for
any x ∈ X/W , the product of all the terms of clbl(x) is equal to ∆ in B(W ), as it is
represented by the circular tunnel (x, 2πh ). Thus, if the cyclic support of x contains k
points, then clbl(x) lies inside Dk(c).

Theorem 2.22. ([Bes15, Proposition 11.13])
A pair (x, (a1, · · · , ak)) ∈ E◦

n ×Dk(c) is compatible if the cyclic support of x contains k
points, and their respective multiplicities coincide with (ℓR(a1), · · · , ℓR(ak)).
The map (LL, clbl) induces a bijection between X/W and the set E◦

n ⊡D(c) of compatible
pairs. This bijection induces a topology on the latter.

By [Bes15, Remark 7.21], a path γ in En admits a unique lift γ̃ in X/W with fixed
starting point provided that points are only merged and not unmerged in γ(t) when t
increases. We want to understand how the cyclic label of γ̃(t) changes depending on γ.

Lemma 2.23. (Hurwitz Rule)
Let x ∈ X/W , and let T := (x, L) be a circular tunnel. Let also γ : [0, 1] → X/W be a
path starting at x and such that, for all t ∈ [0, 1], (γ(t), L) is a circular tunnel. For all
t ∈ [0, 1], the elements in B(W ) represented by (γ(t), L) and T are equal.

Proof. Let t ∈ [0, 1]. Defining H(r, s) := eisLγ(rt) yields a homotopy between the paths
associated to T and to the circular tunnel (γ(t), L). □

This easy result is actually quite useful. For instance it implies directly that altering the
module of one (or several) points of the cyclic support of some x ∈ X/W does not affect
the cyclic label.
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Let now x be in X/W and let (x1, · · · , xk) be its cyclic support. Suppose that we swap
two consecutive points xi and xi+1 of LL(x), there are two natural ways to do so, one going
“farther” than the other:

Let γ+i and γ−i denote the first path and the second path, respectively.

Lemma 2.24. Let x ∈ X/W , with cyclic support (x1, . . . , xk) and cyclic label (s1, . . . , sk).
The cyclic labels of γ+i (1) and γ

−
i (1) are given by

clbl(γ+i (1)) = (s1, . . . , si−1, si+1, s
si+1

i , si+2, . . . , sk)

clbl(γ−i (1)) = (s1, . . . , si−1,
sisi+1, si, si+2, . . . , sk).

Proof. The concatenation of γ−i and γ+i gives a homotopically trivial path from x to itself.

In particular the assertion about clbl(γ−i (1)) follows from that on clbl(γ+i (1)). By con-

struction of the cyclic label, we can assume that all the arguments of the points in LL(x)
are distincts. Let then θ be some angle strictly between the arguments of xi−1 and xi. By
[Bes15, Lemma 11.1], one can replace x by eiθ/hx and consider x′ := γ+1 (x).

Now if θ′ denotes an angle strictly included between the arguments of x2 and x3, then
the circular tunnels (x, θ′) and (x′, θ′) represent the same element in B(W ) by the Hurwitz
rule. That is the product of the first two terms of clbl(x) and clbl(x′) are equal. The
Hurwitz rule also shows that the terms of clbl(x) and clbl(x′) are equal for i > 2.

Lastly, the assertion that the first two terms of clbl(x′) are (s2, s
s2
1 ) follows from [Bes15,

Lemma 11.11], using the notion of reduced label ([Bes15, Definition 7.14]) and a modified
version of the Hurwitz rule ([Bes15, Lemma 6.15]). □

By induction, we see that in general, moving a point of the cyclic support of some
x ∈ X/W may only affect the terms of the cyclic label corresponding to points of the
support with lower module.

2.4. Regular numbers and topological groupoids. We can now move on to the defi-
nition of the Springer category associated to a regular number. We keep the definitions and
notation of the last section. Let d be a regular number for W , let g ∈ W be a ζd-regular
element. Let also Wg := CW (g) be the centralizer in W of g. We set

p :=
d

d ∧ h
, q :=

h

d ∧ h
where d ∧ h is the gcd of d and h. The categories we are going to consider are defined
as fundamental groupoids with fat basepoints (cf. [Bes15, Appendix A]) having several
contractible connected components. Define

D :=
⋃
ζ∈µp

ζiR⩾0,

Up := {x ∈ X/W | LL(x) ∩D = ∅},
Uµd := {x ∈ (X/W )µd | LL(x) ∩D = ∅}.

The set D is composed of p half-lines starting at 0. It cuts the plane in p sectors P1, . . . Pp,
labeled clockwise starting from the vertical half-line iR+ ⊂ D.
In the following example we have p = 3:
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D

P1

P2

P3

Lemma 2.25. ([Bes15, Lemma 11.22])
Let x ∈ Up with cyclic label (c1, · · · , ck). For i ∈ [[1, d′]], define ui as the product of the
cj corresponding to points inside the sector Pi. The cyclic content of x is defined as
ccp(x) := (u1, . . . , up).
The map ccp induces a bijection between the connected components of Up (resp. Uµp)
and Dp(c) (resp Dq

p(c)). Furthermore the connected components of Up (resp. Uµd) are
contractible.

Since the connected components of Up and Uµd are contractible, we can use them as fat
basepoint for groupoids in the sense of [Bes15, Definition A.4].

Definition 2.26. ([Bes15, Definition 11.23])
The Springer category associated to W and d is the groupoid

Bq
p(W ) = π1((X/W )µd ,Uµd)

The functoriality of π1 gives a natural functor Bq
p(W ) → B(W ).

Note that Bq
p(W ) is equivalent to the braid group of Wg (in particular, it is a connected

groupoid). We now establish an isomorphism between the topological groupoid Bq
p(W )

and the category M(c)qp. Let s := (a, b) ∈ D2q
2p(c) be a morphism in M(c)qp. By Theorem

2.22, there is a unique element xs ∈ Uµd such that clbl(x) = s and LL(xs) consists of the

points e
iπ( 1

2
− 2j+1

2p
)
such that the j-th term of s is nontrivial. The circular tunnel (xs,

π
d′h)

then defines an element of Bq
p(W ) which we denote by bs.

Theorem 2.27. ([Bes15, Theorem 11.28])
The map s 7→ bs extends to a groupoid isomorphism G(M(c)qp) → Bq

p(W ).

We have the following diagram of functors

M(c)qp� _

��

πp // M(c)� _

��
G(M(c)qp)

≃
��

// G(c)

≃
��

Bq
p(W ) // B(W )

As ∆h ∈M(c) represents the full-twist in B(W ), a d-th root of the full-twist is a (d, h)-
periodic element ofM(c). Such an element is conjugate to a (p, q)-periodic element ofM(c)
by Proposition 1.27. Let u be an object of Bq

p(W ), that is an object ofM(c)qp or an element
of Dq

p(c). By Theorem 1.40, the morphism Bq
p(W ) → B(W ) sends the automorphism

group Bq
p(W )(u, u) to the centralizer in B(W ) of some (p, q)-periodic element of M(c), in

particular a d-th root of.

Lemma 2.28. Let u be an object of Bq
p(W ). The group isomorphisms

B(Wg) ≃ Bq
p(W )(u, u) ≃ G(M(c)qp)(u, u)

maps the full-twist in B(Wg) to ∆ph(u).
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Proof. The morphism ∆p(u) in M(c)qp corresponds to a rotation of angle 2π
ph , while the

full-twist corresponds to a rotation of angle 2π. □

3. Properties of Springer categories

Theorem 2.27 gives a way to study the braid group of the centralizer of a regular element
in a well-generated complex reflection group using Garside theory. This section is dedicated
to the study of the categories of periodic elements associated to dual braid monoids, and
to the results we deduce for the associated braid groups.

Let W < GL(V ) be an irreducible well-generated complex reflection group of rank n,
with highest degree h. Let d be a regular number for W . We set again

p :=
d

d ∧ h
, q :=

h

d ∧ h
We choose some Coxeter element c in W and we denote by C the category M(c)qp of
(p, q)-periodic elements of the dual braid monoid M(c). The enveloping groupoid B of
C is equivalent to the braid group of the centralizer of some ζd-regular element in W by
Theorem 2.27.

Note again that the full-twist of B(W ) is equal to ∆h, where h is the highest degree
of W . The category of (1, h)-periodic elements is then simply the monoid M(c) itself.
Thus the content of this sections also applies to the dual braid monoid of a well-generated
irreducible complex reflection group.

We denote by Iqc the set of elements of Ic which are invariant under ϕq (that is, invariant
under conjugation by cq).

3.1. Elementary properties. Recall from Definitions 1.31 and 1.33 that C depends on
the sets Dq

p(∆), D2q
2p(∆) and D3q

3p(∆). Thanks to Remark 2.13 and Proposition 1.30, we
can replace these by

Ob(C) := Dq
p(c) ≃

{
u ∈ Iqc

∣∣∣∣∣
{
pℓR(u) = ℓR(c) = n

u(uc
η
) · · · (uc(p−1)η

) = c

}
Sq
p := D2q

2p(c) =
{
(a, b) ∈ (Iqc )

2 | ab ∈ Ob(C)
}

Rq
p := D3q

3p(c) =
{
(x, y, z) ∈ (Iqc )

3 | xyz ∈ Ob(C)
}

where η is the integer associated to (p, q) introduced in Lemma 1.28 and Remark 1.29.
Under these definitions, a simple morphism (a, b) in the graph of simples Sq

p goes from ab

to bac
η
in C, and an element (x, y, z) of D3q

3p(c) induces the relation (x, yz)(y, zxc
η
) = (xy, z)

in Rq
p. The following lemma is an obvious consequence of the definition of Ob(C).

Lemma 3.1. Let u ∈ Ob(C), the morphism ∆p(u) = (u, 1) has length ℓR(u) = n
p . This

length doesn’t depend on u and every simple morphism in C has length at most n
p .

Let u ∈ Dq
p(c) be an object of C. The collapse functor πp : C →M(c) sends ∆q

p(u) to some
(p, q)-periodic element in M(c). We know that ∆p(u) = (u, 1) and ∆p(ϕ

n
p (u)) = (uc

ηn
, 1).

We then have

πp(∆
p
p(u)) = πp

(
(u, 1)(uc

η
, 1) · · · (uc(p−1)η

, 1)
)

= uuc
η · · ·uc(p−1)η

= c.

If q := pk + r is the Euclidean division of q by p, then we get

πp(∆
q(u)) = ckuc

pkη · · ·uc(pk+r−1)η
.

We know from Theorem 1.40 that this is a (p, q)-regular element in M(c). This gives
an explicit formula for roots of the full-twist in B(W ), provided that one knows how to
compute elements of the sets Dn

m(c).
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Lemma 3.2. The atoms of C are exactly the simples s = (a, b) ∈ Sq
p(c) such that a admits

no proper divisors in Iqc . In particular if ϕq is trivial, a simple morphism of C is an atom
if and only if it has length 1.

Proof. The first statement follows directly from Lemma 1.38. If ϕq is trivial (that is, if ∆q

is central in M(c)), then Lemma 1.38 gives an isomorphism between Sq
p(u,−) and [1, u]⪯

where u is the source of s. Thus s is an atom if and only if a lies in Rc. Since by definition
ℓ(s) = ℓ(a), we get the desired result. □

Proposition 3.3. If p > 1, then there are no pairs of parallel simples in C that is, a simple
morphism is uniquely determined by its source and target. In particular, for u ∈ Ob(C),
we have Sq

p(u, u) = {1u} and Sq
p(u, ϕp(u)) = {∆p(u)}.

Proof. Let s := (a, b) be a simple morphism in C, and let u, v denote the source and target
of s, respectively. We have u = ab and v = bac

η
. We show that b is the left-gcd of u and

v in Ic. The result is obvious when a = 1, so we assume a ̸= 1. We have ab = bab, so b
is an obvious left-divisor of ab and bac

η
. If b is not the gcd of ab and bac

η
, then there is a

nontrivial common divisor d of a and ac
η
. Since p > 1, we have ∆ = abac

η
bc

η · · · (ab)c(p−1)η

and abac
η
is simple. Since all elements of Ic are balanced, we obtain that d2 divides abac

η
,

thus d2 ∈ Ic, which contradicts Lemma 2.11.
Now, let (a′, b′) ∈ Sq

p have the same source and target as (a, b). We have u = ab = a′b′

and v = bac
η
= b′a′c

η
. We have b ⪯ b′ and b′ ⪯ b, so b = b′ and (a, b) = (a′, b′). □

In the case p = 1. There is only one object in C, which corresponds to ∆ ∈ D1(∆). The
proposition is then false in this case.

Lemma 3.4. (Lifting words expressing simples)
Let s := (a, b) be a simple morphism in C, and let a1 · · · ar be a word in Iqc expressing a in
M(c). There is a unique path s1 · · · sr in Sq

p expressing s in C and such that πp(si) = ai
for all i ∈ [[1, r]]

Proof. Let u := ab be the source of s. We proceed by ⪰-induction on s. If s is an atom,
then a is an atom of Iqc by Lemma 3.2. The only word in Iqc expressing a is then a itself
and the result is trivial. Now for the general case, we have a1x = a with x = a2 · · · ar. By
Lemma 1.38, s1 := (a1, xb) is the only atom in C with source u and such that πp(s1) = a1.
By induction hypothesis, there is a unique path s2 · · · sr expressing (x, bac

η

1 ) in C and such
that πp(si) = ai for i ∈ [[2, r]]. The path s1s2 · · · sr is then the unique path expressing s
and such that πp(si) = ai for i ∈ [[1, n]]. □

Let s := (a, b) ∈ Sq
p be a simple morphism in C. Its source is ab = bϕη(abc

−η
) and its

target is bϕη(a) = ac
ηb−1

b. By Lemma 1.38 and Lemma 1.10, we deduce the existence of
the following simple morphisms in C

s♭ := (abc
−η
, b) and s# := (ac

ηb−1
, b).

Lemma 3.5. Let s := (a, b) be a simple morphism in C.
(a) The target of s♭ is the source of s, and the target of s is the source of s#.

(b) We have (s♭)# = (s#)♭ = s.

(c) The paths s♭s and ss# are both in greedy normal form in C.
(d) We have ϕp(s

#) = (ϕp(s))
# and ϕp(s

♭) = (ϕp(s))
♭.

Proof. (a) The target of s♭ is bab = ab and the source of s# is ac
ηb−1

b = bac
η
.

(b) We have s♭# = (abc
−η
, b)# = (abc

−ηcηb, b) = (a, b) = s. The same reasoning proves that

(s#)♭ = s.
(c) Since s = (a, b) is a simple morphism, ab = u is a simple element inM(c). In particular

a and b are coprime by Proposition 2.12. We get that the path s♭s is greedy by Corollary
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1.39. The path ss# = (s#)♭s# is also greedy by the same argument.
(d) We have

(ϕp(s))
♭ = (ac

η
, bc

η
)♭ = (ac

ηbc
η
c−η

, bc
η
) = (ab, bc

η
) = ϕp(s

♭)

and
(ϕp(s))

# = (ϕp(s
#♭))# = ((ϕp(s

#))♭)# = ϕp(s
#)

□

The transformation s 7→ s# is a bijection of the finite set D2q
2p(c): it has finite order. As

the source of s# is the target of s, there is then a smallest integer n such that s(n#) = s.

Definition 3.6. Let s : u→ v be a simple morphism in C. The simple loop (of the object
u) associated to s is the morphism

λ(s) := ss#s## · · · s♭♭s♭ ∈ C(u, u)
If s is an atom of C, then we say that λ(s) is an atomic loop.

Lemma 3.7. Let s be a simple morphism in C. The simple loop λ(s) is rigid, in particular
it lies in its own super-summit set.

Proof. By Lemma 3.5 (c), the greedy normal form of λ(s) is given by

λ(s) := ss#s## · · · s♭♭s♭.
Since s♭s is greedy, we get that λ(s) is rigid. By Lemma 1.22, we have cyc(λ(s)) = λ(s#)

and dec(λ(s)) = λ(s♭). In particular we see that cycling and decycling a simple loop
doesn’t change its inf or its sup. By Proposition 1.24, we deduce that λ(s) lie in its own
super-summit set. □

Remark 3.8. Let u be an object of M(c)p. We have

∆p(u)
# = (u, 1)# = (uc

η
, 1) = ϕp(∆p(u)) = ∆p(ϕp(u))

So λ(∆p(u)) = ∆k
p(u) where k is the smallest integer such that ϕkp(u) = u. By definition

of C, we have that k divides q: there is some k′ such that kk′ = q. The element (∆p)
q(u)

is then equal to λ(∆p(u))
k′ . By Theorem 1.40, the group B(u, u) then identifies with the

centralizer in G(c) of πp(λ(∆p(u))
k′).

3.2. The case p = 1. Exceptionally in this Section, we denote by Ic(W ) the interval
associated to c in W for the reflection length. Let q be a positive integer. A (1, q)-periodic
element in the dual braid monoid M(c) is simply given by ∆q. The associated category of
(1, q)-periodic elements is then the submonoid M(c)ϕ

q
of M(c). Its set of simple elements

corresponds to the set Ic(W )c
q
of simple elements which commute with cq in W . We have

by Theorem 2.27 that M(c)ϕ
q
is a Garside monoid for the braid group of the centralizer

Wcq := CW (cq).

Lemma 3.9. Let W be a well-generated irreducible group, and let q be a positive integer.
The group Wcq = CW (cq) (acting on the eigenspace Vcq = Ker(cq − ζqh)) is well-generated.

Proof. By [Bes15, Theorem 2.4], we known that an irreducible complex reflection group
is well-generated if and only if the sum of its i-th degree (in increasing order) with its
i-th codegree (in decreasing order) is constant and equal to the highest degree. Let n be
the rank of W , we denote the degrees (resp. codegrees) of W by d1, . . . , dn in increasing
order (resp. d∗1, . . . , d

∗
n in decreasing order). Let d be the order of ζqh. The integer d is

regular for W and we know by Theorem 2.6 that the degrees (resp. codegrees) of Wcq are
precisely the di (resp. the d∗i ) that are divisible by d. Since d divides h = di + d∗i for all
i ∈ [[1, n]], we have that d divides di if and only if it divides d∗i . Thus, if the degrees of Wcq

are di1 , . . . , dik , then the codegrees of Wcq are d∗i1 , . . . , d
∗
ik
. In particular for j ∈ [[1, k]], we

have dij + d∗ij = h = dik and Wcq is well-generated. □
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We have c ∈ Wcq and, as Ker(c − ζh) ⊂ Ker(cq − ζqh) = Vcq , it is a Coxeter element of
Wcq . Because of this lemma, we can consider the interval Ic(Wcq) associated to c inWcq for
the reflection length in Wcq . This section is devoted to the proof of the following theorem.

Theorem 3.10. Let W be a well-generated irreducible group with a Coxeter element c,
and let q be a positive integer. The posets Ic(W )c

q
= Ic(Wcq) are equal. That is, we have

Ic(W )c
q
= Ic(Wcq) as subsets of Wcq and, for s, t ∈ Ic(Wcq), we have s ⪯ t in W if and

only if s ⪯ t in Wcq , for the respective reflection length of W and Wcq .

Corollary 3.11. Let W be a well-generated irreducible group with a Coxeter element c,
and let q be a positive integer. The monoid M(c)ϕ

q
is isomorphic to the dual braid monoid

M ′(c) associated to Wcq .

The corollary comes from the fact that the defining presentation of an interval monoid
only depends on the poset structure of the associated interval (I,⪯): the defining relations
are all relations of the form s(s−1t) = t for s, t ∈ I with s ⪯ t.

The proof of Theorem 3.10 is ultimately going to rely on a case by case analysis, but we
can do some easy reductions.

Lemma 3.12. We keep the notation of Theorem 3.10. If Theorem 3.10 holds when q
divides the highest degree of W , then it holds for all values of q.

Proof. Let h be the highest degree of W . Since h is the order of c, we have that the order
d of cq divides h. we set q′ := h/d. The two elements cq and cq

′
both have order d in the

cyclic group ⟨c⟩ of order h. There are two integers a and b with caq = cq
′
and cq

′b = cq. We

then have Wcq = Wcq′ , Ic(W )c
q
= Ic(W )c

q′
and M(c)ϕ

q
= M(c)ϕ

q′
. Thus Theorem 3.10

holds for q if and only if it holds for q′, which divides h. □

From now on we assume that the integer q divides h, and we set d = h/q. The element
cq is ζd = ζqh-regular. If d divides all the degrees of W , then cq is central in W and we
have Wcq =W , Theorem 3.10 is obvious in this case. If h is the only degree of W divisible
by d, then Wcq is a complex reflection group of rank 1: it is cyclic and equal to ⟨c⟩. We
have Ic(Wcq) = {Id, c}. On the other hand, any s ∈ Iqc lies in Wcq = ⟨c⟩. We then have
Iqc = {Id, c} by [Bes15, Lemma 12.2]. The poset structure is induced by Id ⪯ c in both
cases and Theorem 3.10 holds.

Note that these two extreme cases are sufficient to prove Theorem 3.10 when W has
rank 2. We now distinguish whether or not W belongs in the infinite series.

The case where W is a well-generated irreducible exceptional group is handled by com-
puter.

If W is a well-generated irreducible group of rank n ⩾ 3 belonging to the infinite series
then we have either

- W ≃ Sn+1 acting the the hyperplaneH in Cn+1 given by the equation x1+· · ·+xn+1 = 0.
This is not the group G(1, 1, n+ 1), as the latter acts on a space of dimension n+ 1 and
is not irreducible. However, the sets of reflections of these two groups are equal (they are
the transpositions in Sn+1), and their sets of Coxeter elements are the same (they are
the n+ 1-cycles in Sn+1). Thus the interval monoids given by W and G(1, 1, n+ 1) are
the same and we can restrict our attention to the latter group.

- W ≃ G(m, 1, n) for m ⩾ 2.
- W ≃ G(e, e, n) for e ⩾ 2 (this group is always irreducible when n ⩾ 3).

3.2.1. W = G(1, 1, n) for n ⩾ 4. Let ℓW denote the reflection length in W . Our approach
is largely modeled on that of [BW02, Section 3 and Section 4], which covers the case where
n is even and q = n

2 .
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Lemma 3.13. Let w = c1 · · · ck be a product of disjoint cycles in W . We have

ℓW (w) =
k∑

i=1

ℓW (ci) =
k∑

i=1

(ℓ(ci)− 1)

where ℓ(c) denotes the size of the support of c.

Proof. The group W is a complexified real reflection group by [DDGKM, Lemma IX.2.19].
The reflection length ℓW (w) is then given by the codimension of the fixed space of w acting
on Cn. Since the ci all have disjoint support, the first equality is immediate. For the second
equality, let c = (i1 · · · ik) be a k cycle in W . The fixed space of c acting on Cn is given
by {(x1, . . . , xn) ∈ Cn | xi1 = xi2 = · · · = xik} and has codimension k − 1. □

The highest degree of W is n. Let q be a divisor of n, with dq = n. We label the
canonical basis of Cn in the following way

{e(0, 1), e(0, 2), . . . , e(0, q), e(1, 1), . . . , e(d− 1, q)}

A guiding idea is to think of e(j, i) as ζjdei in the vector space Cq (with canonical basis
e1, . . . , eq). We consider the following element of W

c(1, 1, n) := (e(0, 1) e(0, 2) · · · e(0, q) e(1, 1) · · · e(d− 1, q))

It is a Coxeter element of W as the vector
∑q

i=1

∑d−1
j=0 ζ

n−i−qj
n e(j, i) is a ζn-eigenvector for

c(1, 1, n) which is regular. We have

c(1, 1, n)q = (e(0, 1) e(1, 1) · · · e(d−1, 1))(e(0, 2) · · · e(d−1, 2)) · · · (e(0, q) · · · e(d−1, q))

Lemma 3.14. The eigenspace V := Ker(c(1, 1, n)q − ζd Id) has dimension q and admits a
basis v := {v1, · · · , vq}, where

vi :=
d−1∑
j=0

ζd−j
d e(j, i).

The isomorphism of vector spaces V ≃ Cq given by the basis v induces an isomorphism
between Wc(1,1,n)q and G(d, 1, q).

Proof. The degrees of Wc(1,1,n)q acting on V are the degrees of G(1, 1, n) which are divided
by d, that is d, 2d, . . . , dq. In particular, Wc(1,1,n)q has rank q and V has dimension q. As
the vi are clearly linearly independent, v is a basis for V .

The groups Wc(1,1,n)q and G(d, 1, q) share the same degrees (cf. [BMR98, Table 2]), and
the same cardinality (since the order of a complex reflection group is the product of its
degrees). We then only have to show that the image of Wc(1,1,n)q in GLq(C) contains a
generating set of G(d, 1, q), like the one given in [LT09, Section 2.7]. This is a direct check:

- The cycle (e(0, 1) e(1, 1) · · · e(d− 1, 1)) acts trivially on vj for j ̸= 1 and sends v1 to ζdv1.
- For i ∈ [[1, q− 1]], the permutation (e(0, i) e(0, i+1)) · · · (e(d− 1, i) e(d− 1, i+1)) swaps
vi and vi+1.

□

From now on, we set W ′ = Wc(1,1,n)q and ℓW ′ the reflection length for elements of W ′

regarding the reflections of W ′ acting on V . The action of c(1, 1, n) on V is given (in the
basis v) by the matrix

c(d, 1, q) :=


0 ζd

1
. . .
. . . 0

1 0


which is indeed a Coxeter element for the group G(d, 1, q) (see Section 3.2.2). The group
G(d, 1, q) is endowed with a character χ, sending a monomial matrix to the product of its
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nonzero entries. The isomorphism W ′ ≃ G(d, 1, q) of Lemma 3.14 allows us to define χ on
W ′.

Let c := (e(j1, i1) · · · e(jk, ik)) ∈W be a cycle. We set

c(1) := cc(1,1,n)
q
= (e(j1 − 1, i1) · · · e(jk − 1, ik)).

Proposition 3.15. An element σ ∈W lies in W ′ if and only if can be written as decom-
position as a product of disjoint cycles of the form

σ = c1c
(1)
1 · · · c(d−1)

1 c2c
(1)
2 · · · c(d−1)

2 · · · cac(1)a · · · c(d−1)
a γ1 · · · γb

where γ
(1)
i = γi for i ∈ [[1, b]].

Proof. Our proof is an adaptation of the proof of [BW02, Proposition 3.1], which deals with
the case d = 2. First, it is clear that elements of the given form lie in W ′. Conversely, let
σ = c1 · · · cr be a product of disjoint cycles in Sn. We have that c(1, 1, n)q centralizes σ if

and only if c1 · · · cr = c
(1)
1 · · · c(1)r . By uniqueness (up to reordering) of cycle decompositions

in Sn, for each i either ci = c
(1)
j for some j ̸= i or else ci = c

(1)
i . An immediate induction

then gives that σ has the required decomposition. □

We note in particular that the cycles ci · · · c(d−1)
i in the decomposition of Proposition

3.15 are disjoint.

Definition 3.16. Let c ∈W be a cycle such that c, c(1), . . . , c(d−1) are disjoint. The product
cc(1) · · · c(d−1) will be denoted by c̃ and called a saturated cycle. If γ ∈W is a cycle lying
in W ′, we say that γ is a balanced cycle.

Proposition 3.15 states that elements of W ′ are the products of disjoint saturated cycles
and disjoint balanced cycles.

Lemma 3.17. Let c̃ be a saturated cycle in W ′. We have χ(c̃) = 1 and ℓW ′(c) = ℓ(c)− 1.
Let γ be a balanced cycle in W ′. We have χ(γ) = ζd and ℓW ′(γ) = ℓ(γ)/d.

Proof. Let c = (e(j1, i1) · · · e(jk, ik)) be a cycle such that c, . . . , c(d−1) are all disjoint. By
assumption, i1, . . . , ik are all distinct. One readily sees that c̃ acts on V by{

c̃.vim = ζ
jm+1−jm
d vim+1 ∀m ∈ [[1, k − 1]],

c̃.vik = ζj1−jk
d vi1 .

In particular, we have χ(c̃) = ζj2−j1
d · · · ζjk−jk−1

d ζj1−jk
d = 1. The fixed space of c̃ acting on

V is generated by all the vi with i /∈ {i1, . . . , ik} and vi1 + · · ·+ vik . Thus ℓW ′(c̃) = k− 1 =
ℓ(c)− 1 by Lemma 3.14 and [Shi07, Theorem 2.1].

Let γ be a balanced cycle. It can be written as

γ = (e(0, i1) e(j2, i2) · · · e(jk, ik) e(1, i1) · · · e(jk + d− 1, ik)).

The action of γ on V is then given by
γ.vi1 = ζj2d vi2 ,

γ.vim = ζ
jm+1−jm
d vim+1 ∀m ∈ [[2, k − 1]],

γ.vik = ζ1−jk
d v1.

In particular we have χ(γ) = ζj2d · · · ζjk−jk−1

d ζ1−k
d = ζd. The fixed space of γ acting on V is

generated by all the vi with i /∈ {i1, . . . , ik}. Thus ℓW ′(γ) = k = ℓ(γ)/d again by Lemma
3.14 and [Shi07, Theorem 2.1]. □

By combining Lemma 3.17 and Lemma 3.13, we obtain the following proposition.
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Proposition 3.18. Let σ = c̃1 · · · c̃aγ1 · · · γb ∈ W ′. The reflection length of σ in W and
W ′ are given by

ℓW (σ) =

a∑
i=1

d(ℓ(ci)− 1) +

b∑
j=1

(ℓ(γi)− 1) and ℓW ′(σ) =

a∑
i=1

(ℓ(ci)− 1) +

b∑
j=1

ℓ(γi)

d
.

In particular, we have ℓW (σ) + b = dℓW ′(σ).

This relation between reflection lengths in W and in W ′ will be the key element in our
proof of Theorem 3.10 for the case W = G(1, 1, n).

Lemma 3.19. Let D be a nontrivial diagonal matrix in G(d, 1, q). We have D ⪯ c(d, 1, q)
in G(d, 1, q) if and only if D is a diagonal reflection s with χ(s) = ζd.

Proof. By [Shi07, Theorem 2.1], the reflection length ℓG(d,1,q)(D) of D in G(d, 1, q) is the

number of nontrivial diagonal entries of D. The underlying permutation of D−1c(d, 1, q)
is an n-cycle. Thus, again by [Shi07, Theorem 2.1], we have

ℓG(d,1,q)(D
−1c(d, 1, q)) =

{
n− 1 if χ(D) = χ(c(d, 1, q)) = ζd

n otherwise

If D is non trivial (i.e if its reflection length is nonzero), we get D ⪯ c(d, 1, q) if and only
if χ(D) = ζd and D has exactly one nontrivial diagonal entry. □

Proposition 3.20. Let σ = c̃1 · · · c̃aγ1 · · · γb ∈ W ′. If σ ∈ Ic(1,1,n)(W
′) or if σ ∈

Ic(1,1,n)(W ), then b ∈ {0, 1} and χ(σ) = ζbd.

Proof. Let γ = (e(0, i1) e(j2, i2) · · · e(jk, ik) e(1, i1) · · · e(jk + d − 1, ik)) be a balanced
cycle. The diagonal reflection ofW ′ sending vi to ζdvi is given by si := (e(0, i) · · · e(d−1, i)).
We have that s−1

i1
γ = (e(0, i1) · · · e(jk, ik)) · · · (e(d− 1, i1) · · · e(jk + d− 1, ik)) is a saturated

cycle. Proposition 3.18 then gives that ℓW ′(si1)+ ℓW ′(s−1
i1
γ) = 1+ k− 1 = k = ℓW ′(γ) and

si1 ⪯ γ in W ′.
Assume that σ ∈ Ic(1,1,n)(W

′) and b > 1. Since γ1 and γ2 have disjoint support, we
deduce that there are two diagonal reflections s, s′ of W ′ such that s ⪯ γ1, s

′ ⪯ γ2, ss
′ ̸= Id

and χ(ss′) = ζ2d . We then have ss′ ⪯ c(1, 1, n) in W ′ which contradicts Lemma 3.19.
Assume now that σ ∈ Ic(1,1,n)(W ). By [DDGKM, Proposition IX.2.7], the set theoretic

partition of the set µn induced by σ is noncrossing (in the sense of [BC06, Section 1.2]).
If b > 1, then the orbits of γ1 and γ2 induce two parts of µn whose convex hull contain 0.
Thus the partition of µn induced by σ is crossing and σ /∈ Ic(1,1,n)(W ).

The assumption on χ(σ) is a direct consequence of Lemma 3.17. □

Proposition 3.21. The two posets Ic(1,1,n)(W )c(1,1,n)
q
and Ic(1,1,n)(W

′) are equal.

Proof. First, we show that the two sets Ic(1,1,n)(W )c(1,1,n)
q
and Ic(1,1,n)(W

′) are equal. Let

σ ∈ Ic(1,1,n)(W
′). By Proposition 3.20, we have χ(σ) ∈ {1, ζd} and χ(σ−1c(1, 1, n)) =

χ(σ)−1ζd. Proposition 3.18 then gives

ℓW (σ) + ℓW (σ−1c(1, 1, n)) = dℓWc(1,1,n)q
(σ) + dℓWc(1,1,n)q

(σ−1c(1, 1, n))− 1

= d(ℓWc(1,1,n)q
(σ) + ℓWc(1,1,n)q

(σ−1c(1, 1, n)))− 1

= dℓWc(1,1,n)q
(c(1, 1, n)q)− 1

= ℓW (c(1, 1, n))

and σ ∈ Ic(1,1,n)(W ). The same reasoning gives Ic(1,1,n)(W )c(1,1,n)
q ⊂ Ic(1,1,n)(W

′).
Let now σ, τ ∈ Ic(1,1,n)(W

′), we have to show that σ ⪯ τ in W ′ if and only if σ ⪯ τ in
W . We consider four cases
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- χ(σ) = 1 and χ(τ) = 1. We have ℓW (σ) = dℓW ′(σ) and ℓW (τ) = dℓW ′(τ). If σ ⪯ τ in
W (resp. in W ′), then σ−1τ ∈ Ic(1,1,n)(W

′) is such that χ(σ−1τ) = 1. We then have

ℓW (σ−1τ) = dℓW ′(σ−1τ) and σ ⪯ τ in W ′ (resp. in W ).
- χ(σ) = ζd and χ(τ) = 1. We cannot have σ ⪯ τ in eitherW orW ′ since this would imply
that σ−1τ is an element of Ic(1,1,n)(W

′) with χ(σ−1τ) = ζ−1
d (we can assume ζd ̸= −1

since the case d = 2 is known by [BW02, Lemma 4.8]).
- χ(σ) = 1 and χ(τ) = ζd. We have ℓW (σ) = dℓW ′(σ) and ℓW (τ) + 1 = dℓW ′(τ). If σ ⪯ τ
in W (resp. in W ′), then σ−1τ ∈ Ic(1,1,n)(W

′) is such that χ(σ−1τ) = ζd. We then have

ℓW (σ−1τ) + 1 = dℓW ′(σ−1τ) and σ ⪯ τ in W ′ (resp. in W ).
- χ(σ) = ζd and χ(τ) = ζd. We have ℓW (σ) + 1 = dℓW ′(σ) and ℓW (τ) + 1 = dℓW ′(τ). If
σ ⪯ τ in W (resp. in W ′), then σ−1τ ∈ Ic(1,1,n)(W

′) is such that χ(σ−1τ) = 1. We then

have ℓW (σ−1τ) = dℓW ′(σ−1τ) and σ ⪯ τ in W ′ (resp. in W ).

□

This closes the proof of Theorem 3.10 in this case. We have the following corollary,
which substantiates [BC06, Remark at the end of Section 7], for which we could not find
a proof in the literature.

Corollary 3.22. The map from G(d, 1, q) to the set of partitions of the regular n-gon that
sends every element of G(d, 1, q) to the partition given by the orbits of its image in Sn

induces a poset isomorphism from Ic(d,1,q)(G(d, 1, q)) to NCP(d, 1, q) := NCP(1, 1, n)µd,
where NCP(1, 1, n) denotes the set of noncrossing partitions of the regular n-gon (in the
sense of [BC06, Section 1.2]).

Proof. The embedding G(d, 1, q) → G(1, 1, n) as the centralizer of c(1, 1, n)q identifies the

posets Ic(d,1,q)(G(d, 1, q)) and Ic(1,1,n)(W
′) = Ic(1,1,n)(W )c(1,1,q). On the other hand, the

map from G(1, 1, n) to the set of partitions of the regular n-gon that sends every ele-
ment of G(1, 1, n) to the partition given by its orbits induces a poset isomorphism from
Ic(1,1,n)(G(1, 1, n)) to NCP(1, 1, n) ([DDGKM, Proposition IX.2.7]).
Under this isomorphism, the action of c(1, 1, n) by conjugation corresponds to a rotation
of angle 2π

n . Thus the isomorphism Ic(1,1,n)(W ) ≃ NCP(1, 1, n) induces an isomorphism

between Ic(1,1,n)(W )c(1,1,n)
q
and NCP(1, 1, n)µd as claimed. □

3.2.2. W = G(m, 1, n) for m ⩾ 2. The highest degree of W is mn. We endow W with the
Coxeter element

c(m, 1, n) =


0 ζm
1 0

1
. . .
. . . 0

1 0


A ζmn-eigenvector for c(m, 1, n) which is regular is given by ζn−1

mn e1 + ζn−2
mn e2 + · · ·+ en.

We have seen in Section 3.2.1 that G(m, 1, n) can be realized as the centralizer in W ′ :=
G(1, 1,mn) of c(1, 1,mn)m, and this identification sends c(m, 1, n) to c(1, 1,mn). Let q be
a divisor of mn. We have

Wc(m,1,n)q ≃ (Wc(1,1,mn)m)c(1,1,mn)q =W ′
c(1,1,mn)q∨m

This identification induces the following isomorphisms of posets

Ic(m,1,n)(W )c(m,1,n)q ≃ (Ic(1,1,mn)(W
′
c(1,1,mn)m))

c(1,1,mn)q

Ic(m,1,n)(Wc(m,1,n)q) ≃ Ic(1,1,mn)(W
′
c(1,1,mn)q∨m)
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By Section 3.2.1, we have equalities of posets

(Ic(1,1,mn)(W
′
c(1,1,mn)m))

c(1,1,mn)q = (Ic(1,1,mn)(W
′)c(1,1,mn)m)c(1,1,mn)q

= Ic(1,1,mn)(W
′)c(1,1,mn)m∨q

= Ic(1,1,mn)(W
′
c(1,1,mn)q∨m)

which gives the desired results.

3.2.3. W = G(e, e, n) for e ⩾ 2, n ⩾ 3. The highest degree of W is e(n− 1). We start by
considering the group W ′ := G(e, 1, n− 1). The character χ :W ′ → C∗ giving the product
of the nonzero entries allows us to define an embedding

i : W ′ −→ W

M 7−→
(
χ(M)−1 0

0 M

)
The element c(e, e, n) = i(c(e, 1, n − 1)) is a Coxeter element for W . For instance

ζn−2
e(n−1)e2 + · · ·+ ζe(n−1)en−1 + en is a ζe(n−1)-eigenvector for c(e, e, n) which is regular. Let

q be a divisor of e(n− 1). We have

c(e, e, n)q =

(
ζ−q
e 0
0 c(e, 1, n− 1)q

)
We can compute directly the centralizer of this element in W .

Proposition 3.23. Let q be a positive integer dividing e(n− 1).

(a) If e(n−1)
e∧n divides q, then W =Wc(e,e,n)q . In particular Theorem 3.10 holds.

(b) If e(n−1)
e∧n does not divide q, then i induces an isomorphism between W ′

c(e,1,n−1)q and

Wc(e,e,n)q .

Proof. (a) Assume that e(n−1)
e∧n j = q for some integer j. Since dq = e(n−1), we obtain that

d = e∧n
j divides e ∧ n, which is the gcd of the degrees of W (cf. [BMR98, Table 2]). The

degrees of Wc(e,e,n) are then the same as that of W .
(b) We denote d the integer such that dq = e(n − 1). Let w ∈ W . We write w as a block
matrix.

w =

(
X Y
Z T

)
with X ∈ M1(C), Y ∈ M1,n−1(C), Z ∈ Mn−1,1(C) and T ∈ Mn−1,n−1(C). We find

w ∈Wc(e,e,n)q ⇔


c(e, 1, n− 1)qZ = ζ−q

e Z

Y c(e, 1, n− 1)q = ζ−q
e Y

Tc(e, 1, n− 1)q = c(e, 1, n− 1)qT

as w is a monomial matrix, Z and Y have at most one nonzero coefficient. Suppose
that Z ̸= 0, then c(e, 1, n − 1)q has a diagonal coefficient equal to ζ−q

d . The underlying
permutation of c(e, 1, n− 1) is a (n− 1)-cycle. Thus c(e, 1, n− 1)q has a nonzero diagonal
coefficient if and only if (n− 1) divides q.

Let j be an integer such that j(n − 1) = q. Since dq = e(n − 1), we have dj = e. We

also have c(e, 1, n− 1)q = (c(e, 1, n− 1)n−1)j = ζje Id. Thus c(e, 1, n− 1)qZ = ζ−q
e Z if and

only if ζje = ζ−q
e , that is, j = −q mod e. Since j(n− 1) = q, we obtain that there is some

integer k with jn = kjd. Thus kd = n and d divides n. We have already shown that d

divides e, we obtain that d divides e ∧ n and that e(n−1)
e∧n divides q.

The same reasoning shows that Y ̸= 0 implies that e(n−1)
e∧n divides q. We obtain Y = 0,

Z = 0, and w ∈Wc(e,e,n)q if and only if w = i(T ) with T ∈W ′
c(e,1,n−1)q . □
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From now on, we suppose that e(n−1)
e∧n does not divide q. The isomorphism between

Wc(e,e,n)q and W ′
c(e,1,n−1)q induced by i induces in turn an isomorphism of posets

Ic(e,1,n−1)(W
′
c(e,1,n−1)q) ≃ Ic(e,e,n)(Wc(e,e,n)q).

On the other hand, we know from Section 3.2.2 that the two posets

Ic(e,1,n−1)(W )c(e,1,n−1)q and Ic(e,1,n−1)(W
′
c(e,1,n−1)q)

are equal. To show that Theorem 3.10 holds in this case, it only remains to show that
the morphism i induces an isomorphism of posets between Ic(e,1,n−1)(W

′)c(e,1,n−1)q and

Ic(e,e,n)(W )c(e,e,n)
q
. By [BC06, Remark after Lemma 1.22], c(e, e, n) induces a free action

(of a cyclic group of order e(n−1)
e∧n ) on the set Ic(e,e,n)(W ) \ i(Ic(e,1,n−1)(W

′)). Since e(n−1)
e∧n

does not divide q by assumption, we get

Ic(e,e,n)(W )c(e,e,n)
q
= i(Ic(e,1,n−1)(W

′))c(e,e,n)
q
= i

(
Ic(e,1,n−1)(W

′)c(e,1,n−1)q
)

which finishes the proof.

3.3. Presentation by Hurwitz relations. As a category of periodic elements, C has been
defined by the categorical presentation ⟨Sq

p | Rq
p⟩+. In practice, we want a presentation

with less generators, for instance with only the atoms of C as generators. Such a result is
known in the case of the dual braid monoidM(c), which is presented by its atoms, endowed
with the Hurwitz relations (see Remark 2.10).

Let A be the set of atoms of C. Recall from Lemma 3.2 that A is made of the simples
(a, b) such that a admits no proper ϕq-invariant left-divisor in M(c).

Lemma 3.24. Let s := (a, b) and t := (d, e) be two composable atoms in C. The product
st is either its own greedy normal form, or it is equal to the simple r = (ad, d−1b).

Proof. If st is not a greedy path, then the left-gcd of t and s is nontrivial. Since t is an
atom, we then get that t ⪯ s, i.e d ⪯ b in M(c). In which case st = (ad, d−1b) is a simple
morphism. □

Lemma 3.25. Consider a square of atoms in C

u
s //

σ
��

v

t

��
v′ τ

// w

The square is commutative if and only if one of the following conditions is met:

(1) s = σ and t = τ .
(2) πp(στ) = πp(st) ∈ Ic. In this case, st = στ is a simple morphism.

Proof. Let us denote s = (a, b), t = (d, e), σ = (α, β) and τ = (δ, ε).
Suppose that we have st = στ and s ̸= σ. Since both s and σ are atoms, we have s ̸⪯ σ
and σ ̸⪯ s: the paths st, στ are not in greedy normal form. By Lemma 3.24, στ = st is a
simple morphism, and we have πp(στ) = πp(st) ∈ Ic.

Conversely, assume that πp(στ) = αδ = ad = πp(st) lies in Ic. If p = 1 then πp is
injective by Section 1.3.1 and στ = st, thus we can suppose that p > 1. Let αx = ay
be the right-lcm of α and a in Ic. Let also ψ(x) and ψ(y) be the elements introduced in
Lemma 1.11. We have αx ⪯ αd and x ⪯ d. By Lemma 1.11, we have ψ(x) ⪯ d, thus
ψ(x) = d by Lemma 3.2. The same argument gives ψ(y) = δ. Since s and σ share the
same source, we have ab = αβ. We deduce x ⪯ b, y ⪯ β, and d ⪯ b, δ ⪯ β again by Lemma
1.11. This proves that st and στ are simple morphisms with the same source and target:
they are equal by Proposition 3.3. □
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Definition 3.26. We call Hurwitz relations on C the relations of the form st = τσ,
where s, t, τ, σ are atoms in C, and πp(στ) = πp(st) ∈ Ic. We call H the set of Hurwitz
relations in C.

Theorem 3.27. The category C is presented by the atoms and the Hurwitz relations, that
is C = ⟨A | H⟩+.

Proof. If p = 1, this is already known from Corollary 3.11, since dual braid monoids
are presented by their atoms, endowed with Hurwitz relations (cf. [Bes15, Lemma 8.8]).
Suppose now that p > 1. We know that C is generated by its atoms, and that the defining
relations of C imply the Hurwitz relations. It remains to show that the defining relations
of C are implied by the Hurwitz relations.

Let st = u be a defining relation of C. We consider three paths of atoms in C
s1 · · · sr, t1 · · · tk, u1 · · ·um

expressing s, t and u, respectively. We set ai = πp(si) for i ∈ [[1, r]], bi := πp(ti) for i ∈ [[1, k]]

and αi := πp(ui) for i ∈ [[1,m]]. In M(c)ϕ
q
, the two words

a1 . . . arb1 · · · bk and α1 · · ·αm

express the same element πp(u). Since M(c)ϕ
q
is presented by the Hurwitz relations (this

is the case p = 1), there is a sequence of words µ1, . . . , µn in the atoms of M(c)ϕ
q
such that

- µ1 = a1 · · · arb1 · · · br
- µn = α1 · · ·αm

- For i ∈ [[1, n− 1]], µi and µi+1 are related by a Hurwitz relation in M(c)ϕ
q
.

In particular, each of the µi expresses the element πp(u) in M(c)ϕ
q
. By Lemma 3.4, each

µi admits a unique lift pi in C, and each of the pi expresses u in C. By Lemma 3.25, the
paths pi and pi+1 are related by a Hurwitz relation in C for i ∈ [[1, n− 1]]. In particular the
equality st = u is implied by the Hurwitz relations in C. □

This presentation can be seen as an analogue of Remark 2.10 for categories of periodic
elements of dual braid monoids. This new presentation will be useful for computational
purposes in Section 4.

3.4. Braided reflections and atomic loops. In this section we give a description of
braided reflections in B(Wg) in terms of atomic loops in the category C. Namely we prove
that a braided reflection is conjugate to an atomic loop. We keep the same notation as in
the last sections.

Since the homeomorphism between Xg/Wg and (X/W )µd doesn’t depend on a choice,
we can identify the two spaces. The choice of a basepoint x ∈ Uµd induces an isomorphism
between B(Wg) ≃ π1(Xg/Wg, x) and B(u, u), where u is the connected component of x in
Uµd . By Remark 2.3, a change of basepoint preserves the set of braided reflections.

We explicit the definition of braided reflections in the context of the topological tools of
Section 2.3 and 2.4.

Proposition 3.28. ([Bes15, Definition 11.12 and Proposition 11.13])
The bijection (LL, clbl) of Theorem 2.22 restricts to a bijection between (X/W )µd and the
set (E◦

n)
µp ⊡ Sq

p of compatible pairs where the first term is µp-invariant, and the second
term belongs in Sq

p .

Following this proposition, we can now see the cyclic label of some x ∈ (X/W )µd as an
element of Sq

p , with the convention introduced in Section 3.1.
Let a ∈ (V/W )µd be on the smooth part of some irreducible divisor of the discriminant

hypersurface in (V/W )µd . For ζ ∈ C∗, the point ζa lies on the smooth part of the same
irreducible divisor as a. In particular, we can replace a by some ζa for ζ ∈ S1 so that no
point of LL(a) lies on D. From now on we assume that this condition is met.
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Since LL is a (ramified) covering ([Bes15, Theorem 5.3]), it is an open map. The choice
of a neighborhood of a then induces a neighborhood of LL(a) in En that is, a neighborhood
in C of each point of the cyclic support of LL(a).

- If x ∈ C∗ is in the support of LL(a), the associated neighborhood is called an outer
neighborhood .

- If a lies on the discriminant hypersurface, that is if 0 ∈ LL(a), we call central
neighborhood the neighborhood of 0 ∈ LL(a).

Definition 3.29. Let a ∈ V/W be a point such that LL(a) ∩ D = ∅. We we say that a
neighborhood of a in V/W is confining if the induced neighborhood of LL(a) satisfies the
following conditions

(1) The outer neighborhoods do not overlap in module the central neighborhood.
(2) The outer neighborhoods never contain points in D.

It is easy to see that any confining neighborhood are stable under intersection and that
they make up a basis of neighborhoods of a in V/W . The goal of a confining neighborhood
is to “isolate” the central neighborhood, so that the exterior points of LL(a) cannot interfere
with the points in the central neighborhood, as seen in the example below

Let now a ∈ (V/W )µd be such that no point of LL(a) lies on D, and let U be a confining
neighborhood of a in V/W . The set U ∩ (V/W )µd is a neighborhood of a in (V/W )µd . In
particular we have that U ∩ Uµd is nonempty since Uµd is dense in (V/W )µd .

Lemma 3.30. Let a ∈ (V/W )µd be such that no point of LL(a) lies on D, and let U be
a confining neighborhood of a in V/W . Let also x ∈ U ∩ Uµd and let u be the connected
component of x in Uµd. There is some s = s(x) ∈ Sq

p(u,−) such that the image of π1(U ∩
(X/W )µd , x) in B(u, u) contains all the simple loops λ(t) with t ⪯ s in C.

Proof. We denote by β = β(x) the product (in clockwise order) of the terms of clbl(x)
corresponding to the outer points in the sector P1. Let γ be a path in U ∩ (X/W )µd

starting from x. For all t ∈ [0, 1] such that γ(t) ∈ Uµd , we have β(γ(t)) = β(x) by Lemma
2.24 and the following discussion.

We consider the path γ which consists in sliding the central points in each sector together
and then counterclockwise next to the associated half-line:
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This standardization motion is homotopically trivial and only impacts the cyclic label.
Let α = α(x) be the first term of the cyclic label of γ(1). The cyclic label of γ(1) is
given by (α, s1, . . . , sk) with s1 · · · sk = b. We associate to x the well defined element
s = s(x) := (α, β) ∈ Sq

p (α is also defined by the equality u = αβ).
Let t = (d, e) be a left-divisor of s in C. There is some m ∈ Sϕq

such that dm = α and
mβ = e. We can desingularize γ(1) so that we obtain a point x′ ∈ U ∩Uµd with cyclic label
(d,m, s1, . . . , sk). The path in U ∩ (X/W )µd starting from x′ and consisting in rotating the
central points to the left, so that the first point of the cyclic support goes into the sector
Pp, represents the simple morphism t in B.

Let x1 denote the endpoint of this motion. The cyclic label of x1 is (m, s1, . . . , sk, d
cη). By

applying a standardization motion γ1, we get a point γ1(1) with cyclic label

(dc
ηms1···sk ,m, s1, . . . , sk) = (dc

ηe,m, s1, . . . , sk)

We see that the circular tunnel associated to γ(1) represents t# in C. By an immediate
induction, we obtain that λ(t) lies in the image of π1(U ∩ (X/W )µd , x) in B(u, u). □

Theorem 3.31. Let u be an object of C, and let s ∈ C(u,−) be an atom. The atomic
loop λ(s) is a braided reflection in the group B(u, u) ≃ B(Wg). Conversely, any braided
reflection in B(Wg) ≃ B(u, u) is conjugate in B to some atomic loop.

Proof. First, if p = 1, then B =M(c)ϕ
q
is isomorphic to the dual braid monoid associated

to Wg by Corollary 3.11. The result is already known in this case: the braided reflections
in B(Wg) are exactly the elements that are conjugated to atoms of the dual braid monoid.

From now on we assume that p > 1. Let s = (α, β) be an atom of C. We consider the
element xs of s used to define the circular tunnel bs of Theorem 2.27. Let γ be the path
consisting of sliding the first point of LL(xs) in each sector towards the center

The endpoint of γ lies on the discriminant hypersurface. Let U be a confining neighborhood
of γ(1) and let r > 0 be such that γ(r) ∈ U . The cyclic label of γ(r) is (α, β). By Lemma
3.30, the image of π1(U ∩ (X/W )µd , γ(r)) in B(u, u) contains λ(s).

Next, let h ∈ π1(U ∩ (X/W )µd , γ(r)) be represented by a loop θ. We can choose θ so
that, at any given t ∈ [0, 1], at most one point of LL(θ(t)) lies in the half-line iR+ (as
points which do not satisfy this form a a subspace of real codimension 2). This expresses
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θ as a concatenation of paths in U ∩ (X/W )µd homotopic to circular tunnels (and their
inverses).

Let t = (d, e) be a simple morphism represented by a path inside U ∩ (X/W )µd . By
Lemma 2.24 and the following discussion, both the source and target of t are elements
of M(c) divisible by β. Since p > 1, the proof of Proposition 3.3 gives that e which is
the gcd in M(c) of the source and target of t. We then have that β divides e and t left-
divides s. The same reasoning (by induction) gives that the only morphisms represented
by a concatenation of paths in U ∩ (X/W )µd (starting from γ(r)) homotopic to circular
tunnels are of the form ss#s## · · · or (ss# · · · )−1. We obtain that π1(U ∩ (X/W )µd , γ(r))
is cyclic and generated by a path representing λ(s) in B, which proves that λ(s) is a braided
reflection in B(u, u).

Conversely, let γ be a path from some x ∈ u to the smooth part of some irreducible
divisor of the discriminant in Xg/Wg ≃ (X/W )µd . Let also ργ denote the braided reflection
associated to γ. Up to conjugacy in B(u, u), we can assume that the endpoint a of γ is
such that no point of LL(a) lies on D and that, for all t ∈ [0, 1[, there is some r ∈ [t, 1[
such that LL(γ(r)) ∈ Uµd .

Let U be a small enough confining neighborhood of a so that the fundamental group of
U ∩ (X/W )µd is infinite cyclic. Let also r ∈ [0, 1] be such that y := γ(r) lies in U ∩ Uµd .
We denote by v the connected component of y in Uµd .

Consider the element s = s(y) introduced in Lemma 3.30. We claim that s is an atom
of C. Otherwise, s admits two distinct left-divisors σ and σ′ (indeed, s(x) is the right-lcm
of the atoms which divide it). Lemma 3.30 implies that the image of π1(U ∩ (X/W )µd , y)
in B(v, v) contains both λ(σ) and λ(σ′). Since π1(U ∩ (X/W )µd , x) is cyclic, there are two

integers k and k′ such that λ(σ)k = λ(σ′)k
′
. Since both λ(σ) and λ(σ′) are rigid, this is

impossible.
Again, as every element of π1(U ∩ (X/W )µd , y) is represented by a path homotopic to

a concatenation of circular tunnels, we obtain that the image of π1(U ∩ (X/W )µd , y) in
B(v, v) is generated by λ(s). The path γr : t 7→ γ(rt) then gives a conjugator in B between
the braided reflection ργ in B(u, u) and λ(s) ∈ B(v, v). □

3.5. Conjugacy of atomic loops and centers of finite index subgroups. In this
section we study the super-summit set of (powers of) atomic loops in C. We deduce results
on the center of finite index subgroups of B(Wg). More precisely we obtain new Garside
theoretic proofs of [Bes15, Corollary 12.7] and of [DMM11, Theorem 1.4] in the case of the
centralizer of a regular element in a well-generated irreducible complex reflection group.

Note again that our approach covers in particular the dual braid monoid associated to
a well-generated irreducible complex reflection group.

Definition 3.32. Let C be a small category. The center of C is the set Z(C) of natural
transformation from the functor 1C to itself.

The data of an element z of Z(C) is equivalent to the data, for every object u of C, of a
morphism zu such that

∀f ∈ C(u, v), zuf = fzv
If C = M is a monoid, we recover the classical definition of the center. Note that Z(C) is
always a monoid. Moreover, the center Z(G) of a groupoid G is a group.

Lemma 3.33. Let G be a connected groupoid, and let u be an object of G. The map

r : Z(G) −→ Z(G(u, u))
z 7−→ zu

is an isomorphism of groups.

Proof. The map r is clearly a morphism of groups. We choose, for every v ∈ Ob(G), a
morphism mv : u → v. Let z0 ∈ Z(G(u, u)) be a central element. We define an element z
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of Z(G) by defining, for every v ∈ Ob(G):
zv := m−1

v z0mv

We have in particular zu = m−1
u z0mu = z0 since z0 is central. Let f : v → w be a morphism

in G, we have

zvf = m−1
v z0mvf = m−1

v z0(mvfm
−1
w )mw = m−1

v (mvfm
−1
w )z0mw = fzw

and z is indeed in Z(G). The map z0 7→ z is the inverse of r. □

It is known from [BMR98, Theorem 2.24] and [Bes15, Theorem 12.3 and Corollary 12.7]
that the center of an irreducible complex braid group is cyclic. The center of the Springer
groupoid B is also cyclic since B is connected. Under a combinatorial assumption on the
integer d, we get that the center of C (and B) is actually generated by some power of the
Garside map ∆.

Proposition 3.34. If d is the gcd of the degrees of W which it divides, then both Z(C)
and Z(B) are cyclic and generated by ∆q

p.

Proof. First, as ∆p is a natural transformation from 1C to ϕp, and as ϕqp = 1C , we get that
∆q

p lies in the center of C.
We claim that Z(B) is generated by Z(C) and ∆−q

p . Let z ∈ Z(B), and let u ∈ Ob(B). We
set nu := inf(zu). Since B admits a finite number of objects (Dq

p(c) is finite by definition),
there is some kq for k ∈ Z⩾0 such that kq + nu > 0 for all object u. We then have that

∆kq
p z ∈ Z(C) and z = ∆−kq

p (∆kq
p z) as claimed.

Now, let ρ be a generator of the center of B(Wg) ≃ B(u, u). As ∆q
p(u) ∈ Z(B(u, u)),

there is some integer k such that ρk = ∆q
p(u). That is ρ is a (pk, q)-regular element in B.

By applying πp, we get that πp(ρ) is a (pk, q)-regular element of B(W ). By assumption,
we have

πp(B(u, u)) = CB(W )(πp(∆
q
p)) ⊂ CB(W )(πp(ρ)).

We also have CB(W )(πp(∆
q)) ⊃ CB(W )(πp(ρ)) since πp(∆

q
p) is a power of πp(ρ). The element

πp(ρ) is then a dk-regular braid in B(W ) with the same centralizer as a d-regular braid.

Since d is maximal regarding to divisibility, we get that k = ±1. Thus ρ = ∆±q
p (u) which

shows the proposition. □

Remark 3.35. The assumption that d is the gcd of the degrees of W which it divides is
important, otherwise Z(C) is generated by some root of ∆q

p. For instance in the group
W = G37, the integers d1 = 5 and d2 = 10 are regulars. We have (p1, q1) = (1, 6) and
(p2, q2) = (1, 3). The associated categories of periodic elements are then monoids, given
by CM(c)(∆

3) and CM(c)(∆
6), respectively. Because d1 and d2 both divide 2 degrees of W ,

those centralizers are equal, and their centers are both equal to ⟨∆3⟩+.

Lemma 3.36. Let λ(s) be an atomic loop of some object u of C. Let t : u→ v be an atom

in C. If the path s♭t is not greedy, then we have λ(s)t = tλ(s′) for some atomic loop λ(s′)
of v.

Proof. Let λ(s) = sn · · · s1 where s1 = s♭ and si+1 := s♭i for i ∈ [[1, n− 1]] (in particular we
have sn = s). We denote t := (α, β) and si := (ai, b) for i ∈ [[1, n]]. By Corollary 1.39, if

s♭t is not greedy, then we have α ⪯ b. Let then x be such that αx = b. We have

s♭t = (a1, b)(α, β) = (a1α, x) = (α, aα1x)(a
α
1 , xα

cη).

We set t1 := (α, aα1x) and σ1 = (aα1 , xα
cη). Again, as α ⪯ b, the path s2t is not greedy, and

we have
s2t1 = (a2, b)(α, a

α
1x) = (a2α, x) = (α, aα2x)(a

α
2 , xα

cη),

and we set again t2 := (α, aα2x), σ2 := (aα2 , xα
cη). By an immediate induction, we get

λ(s)t = tnσn · · ·σ1, with tn := (α, aαnx) and σi := (aαi , xα
cη) for i ∈ [[1, n]]. The two simple

morphisms t and tn share the same source, and we have πp(t) = πp(tn). By Lemma 1.38,
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we have t = tn. For i ∈ [[1, n − 1]], the target of σi+1 is the source of σi, and the second

terms of σi and σi+1 are both equal to xαcη . Thus σi is equal to σ#i+1, again by Lemma
1.38.

We claim that σn · · ·σ1 = λ(σn). Since σi = σ#i+1 for i ∈ [[1, n − 1]], we only have to

show that σ1 is the first σi with target v. The target of σi is x(αa
α
i )

cη) = x(aiα)
cη , and

the source of σn is the target of σ1, that is v = x(a1α)
cη . By cancellativity of M(c), we get

that the target of σi is v only if i = 1, for i ∈ [[1, n]]. □

Theorem 3.37. Let λ(s) ∈ C(u, u) be an atomic loop of some object u, and let f ∈ G. If
there is some endomorphism z ∈ C such that λ(s)nf = fz for some n ⩾ 1, then z = λ(s′)n

for some atomic loop λ(s′) such that λ(s)f = fλ(s′).

Proof. We do the proof in several steps.

1. f is an atom. By assumption, we have f ⪯ λ(s)nf . If λ(s)nf is in greedy normal form,
we get f ⪯ s. Thus f is trivial or f = s. We have λ(s)f = λ(s) in the first case, and

λ(s)f = λ(s#) in the second case. If λ(s)nf is not in greedy normal form, then s♭f
is not in greedy normal form. By Lemma 3.36, we get that λ(s)f is an atomic loop,
hence the desired result.

2. f is a simple morphism. Since C is homogeneous, we can proceed by ⪰-induction
on f . The case where f is an atom has already been dealt with. If f is not an
atom, then λ(s)nf cannot be in greedy normal form as f ⪯ s is impossible. Thus

s♭f is not greedy, and there is some decomposition f = tf ′ with t an atom such that
s♭t is not greedy. By the first point we have that λ(s)t is of the form λ(s′). Since

z = λ(s)f = λ(s)tf
′
= λ(s′)f

′
, the induction hypothesis gives the desired result.

3. f is an arbitrary morphism in B. We have that ∆q
p(u) is central in B(u, u), thus

(λ(s)n)∆
kq
p (u)f = (λ(s)n)f = z for all k ∈ Z. By choosing some k big enough so that

kq+ inf(f) ⩾ 0, we can replace f with ∆kq
p (u)f and assume that f ∈ C. We claim that

both λ(s)n and z lie in SSS(λ(s)n). First, as atomic loops are rigid, we have

cyc(λ(s)) = (s# · · · s♭♭s♭)s = λ(s#) = dec(λ(s)).

Powers of atomic loops are also rigid, and we have cyc(λ(s)n) = dec(λ(s)n) = λ(s#)n.
Because of Proposition 1.24, we get that λ(s)n lies in SSS(λ(s)n). Then, we have
inf(z) ⩾ 0 as z lies in C, so inf(z) = 0 as inf(z) ⩽ inf(λ(s)n). Lastly, we have sup(z) ⩾
sup(λ(s)n) = nm (where m is the length of λ(s)). Since every simple morphism has
length at least 1, and since inf(z) = 0, we get mn = ℓ(z) ⩾ sup(z) ⩾ nm and
sup(z) = nm, so z ∈ SSS(λ(s)n). Let s1 · · · sr be the greedy normal form of f ∈ C.
By Proposition 1.25, each (λ(s)n)s1···si lies in SSS(λ(s)n), in particular is positive. By
an immediate induction using the second case, we get that z is of the form λ(t)n, with
λ(s)f = λ(t).

□

This theorem is an analogue of [DMM11, Proposition 2.2] in the context of Springer
categories. It gives in particular a complete description of super-summit sets of atomic
loops and their powers.

Corollary 3.38. Let u ∈ Ob(B), and let σ ∈ B(Wg) ≃ B(u, u) be a braided reflection.
The super-summit set of σ in B consists of all the atomic loops to which σ is conjugate in
B. Furthermore, for n ⩾ 1, we have

SSS(σn) = {λ(s)n | λ(s) ∈ SSS(σ)}

Proof. We already showed that σ is conjugate to some atomic loop λ(s) ∈ B, and that
λ(s) ∈ SSS(λ(s)) for all atomic loops λ(s). If g ∈ SSS(λ(s)), then g is a positive conjugate
of λ(s) and Theorem 3.37 gives that g is an atomic loop.
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We also have λ(s)n ∈ SSS(σn). If g ∈ SSS(σn), then we also have that g is a positive
conjugate of λ(s)n. We get that g is of the form λ(s′)n for some conjugate λ(s′) of λ(s) by
Theorem 3.37. □

Like in [DMM11], our theorem on conjugacy of atomic loops has the following corollary
on the center of finite index subgroups.

Corollary 3.39. Let U be a finite index subgroup of B(Wg) ≃ B(u, u). We have Z(U) ⊂
Z(B(Wg)).

Proof. Let σ ∈ B(Wg) be a braided reflection, and let x ∈ Z(U). Since U is of finite index,
there is some n ⩾ 1 with xσn = σnx. We claim that σx = xσ.

By Theorem 3.31, there is some morphism f : u → v in B such that σf = λ(s) is an
atomic loop. We define x′ := xf and U ′ := Uf ⊂ B(v, v). By Theorem 3.37, since λ(s)nx =
λ(s)n, we have λ(s)x = xλ(s′) for some atomic loop λ(s′) such that λ(s′)n = λ(s)n. Since
atomic loops are rigid, the equality λ(s)n = λ(s′)n implies λ(s) = λ(s′) and x′ commutes
with λ(s). We obtain that x commutes with every braided reflection in B(u, u), and thus
lies in Z(B(u, u)). □

3.5.1. The case p = 1. In this case, for any simple s, we have s# = s♭ = s and λ(s) = s.
Lemma 3.36 is then a mere consequence of the fact that every simple element is balanced.
Theorem 3.37 is just [DMM11, Proposition 2.2] in the case of the dual braid monoid.

4. Presentations of the braid group B(G31)

The goal of this section is to apply the previous results to the complex braid group
B(G31). In particular we prove several positive homogeneous presentations of this group,
where the generators are braided reflections.

We first consider the complex reflection group G37, which is isomorphic to the real
reflection group of type E8. LetM(c) be the dual braid monoid associated to some Coxeter
element c ofG37. We denote again its set of simple elements by Ic. We have seen in Example
2.7 that the integer 4 is regular for G37, and that the associated centralizer is isomorphic
to G31. Since the Coxeter number of G37 is h = 30, we have (p, q) = (2, 15) in this case. By
Theorem 2.27, the groupoid G(M(c)152 ) is equivalent to the complex braid group B(G31).
We denote C31 :=M(c)152 and B31 := G(M(c)152 ).

The integer η associated to p, q by Lemma 1.28 is η = −7. As c15 = − Id is central in
G37, we have

Ob(C31) := D15
2 (c) = {u ∈ Ic | uuc

8
= c and ℓR(u) = 4},

S15
2 := D30

4 (c) = {(a, b) ∈ (Ic)
2 | ab ∈ Ob(C)},

R15
2 := D45

6 (c) = {(x, y, z) ∈ (Ic)
3 | xyz ∈ Ob(C)}.

By Lemma 3.2, the atoms of C31 are exactly the elements of length 1. Since 4 is the gcd
of degrees of G37 which it divides, we can apply Proposition 3.34 and Corollary 3.39. We
get

Theorem 4.1. The centers of C31 and B31 are cyclic and generated by ∆15
2 . If U is a finite

index subgroup of B(G31), then Z(U) ⊂ Z(B(G31)). In particular, the center of the pure
braid group P (G31) is cyclic and generated by the full-twist.

Proof. The only nontrivial part is that the full-twist is a generator of Z(P (G31)). Let
B(G31) ≃ B31(u, u), the center of P (G31) is cyclic and generated by the smallest power
of ∆15

2 (u) which lies in P (G31). Since the collapse functor C31 → M(c) sends ∆15
2 (u0) to

some element g with g2 = ∆15
2 , the smallest power of ∆15

2 lying in P (G31) is the full-twist
∆60. □
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The remainder of this section is devoted to the study of presentations of B(G31). Let
u be an object of C31, we have an isomorphism B31(u, u) ≃ B(G31), which sends atomic
loops to braided reflections.

On the one hand, we build a conjectural presentation of B31(u, u) with atomic loops as
generators. On the other hand, the Reidemeister-Schreier method for groupoids (cf. Annex
A.2) gives a presentation of B31(u, u) which we know holds. We then prove that these two
presentations are equivalent.

4.1. The method. Let u be an object of B31. We start by considering the submonoid L+
u

of C31(u, u) generated by atomic loops of u. Note that we have L+
u ̸= C31(u, u) in general.

Our first goal is to construct a (conjectural) group presentation using L+
u . We consider

the following algorithm.

Algorithm 4.1 Compute shortest right-multiple of atomic loops in L+
u

Input: Two atomics loops λ(s) and λ(t) of u.
Output: If λ(s), λ(t) admit a common right-multiple in L+

u , then the output is a pair
of words θ(λ(s), λ(t)), θ(λ(t), λ(s)) in L+

u such that λ(s)θ(λ(s), λ(t)) = λ(t)θ(λ(t), λ(s)).
No output otherwise.
put i := 1
compute the set Si of words of length i in L

+
u

while λ(s)m1 ̸= λ(s)m2 in C31 for all (m1,m2) ∈ Si × Si do
put i := i+ 1
compute the set Si of words of length i in L

+
u

end while
put S := {(m1,m2) ∈ Si × Si | λ(s)m1 = λ(t)m2 ∈ C31}
return (m1,m2) ∈ S such that m1 is the lowest possible in the lexicographic order,
and m2 is the lowest possible in the lexicographic order among the words m such that
(m1,m) ∈ S.

Algorithm 4.1, running on two atomic loops of u, terminates if and only if they admit a
common right-multiple in L+

u . The fact that it terminates on every pair of atomic loops of u
(which we checked by computer using the data of Section 4.2) proves that all pair of atomic
loops of u admit a common right-multiple. We now consider the following presentation:

- The set of generators is a set Xu := {λ′(s)} in bijection with atomic loops of u in
L+
u ⊂ C31(u, u).

- The set Ru is given by relations of the form

λ′(s)θ(λ′(s), λ′(t)) = λ′(t)θ(λ′(t), λ′(s))

where θ(λ′(s), λ′(t)) is the same word as θ(λ(s), λ(t)) but with letters in Xu.

We define Hu := ⟨Xu | Ru⟩ and H+
u := ⟨Xu | Ru⟩+. By [DDGKM, Lemma II.4.3], the

presentation of H+
u is right-complemented in the sense of [DDGKM, Definition II.4.1].

That is for a ̸= b ∈ Xu, there is exactly one relation of the form a . . . = b . . ., namely
aθ(a, b) = bθ(b, a).

The goal of this section is to show the following theorem

Theorem 4.2. Let u ∈ Ob(C31). The natural map from Xu to the set of atomic loops of
u induces a group isomorphism Hu ≃ B31(u, u). In particular, ⟨Xu | Ru⟩ gives a positive
homogeneous presentations of B(G31) with braided reflections as generators.

We first notice that, by definition of Ru and Xu, the natural map from Xu to the set of
atomic loops of u induces a group morphism fu : Hu → B31(u, u). We only have to show
that the said morphism is an isomorphism. We show this by case by case analysis on the
objects of C31.
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Lemma 4.3. Let u ∈ Ob(C31). If fu is an isomorphism, then fϕ2(u) is also an isomorphism.
In particular we only need to show that Theorem 4.2 holds for a system of representative
of ϕ2-orbits in B31.

Proof. The automorphism ϕ2 gives an isomorphism between C31(u, u) and C31(ϕ(u), ϕ(u)).
Because of Lemma 3.5, ϕ2 induces a bijection between the sets of atomic loops of u and of
ϕ(u). We obtain that ϕ2 induces bijections between Xu and Xϕ(u), and between Ru and
Rϕ(u), respectively. Thus Hu ≃ Hϕ(u) which shows the claim. □

Remark 4.4. The atoms of the monoid H+
u are in bijection with atomic loops of u. In

particular H+
u is not isomorphic to the monoid C31(u, u) in general. As a matter of fact,

we will see that the monoid H+
u is never cancellative, and thus cannot be isomorphic to

either L+
u or C31(u, u). The isomorphism we consider only occurs at the level of groups.

Note that the monoid H+
u is homogeneous by definition. In particular we have a solution

to the word problem in H+
u , given by Algorithm 4.2.

Algorithm 4.2 Check equality between two words in H+
u

Input: Two words m1,m2 in the atoms of H+
u

Output: true if m1 and m2 represent the same element of H+
u , false otherwise.

put S := ∅.
put S1 := {m1}.
while S ̸= S1 do

put S := S1.
put S1 the set of words obtained from elements of S1 by applying one relation of Ru.

end while
if m2 ∈ S then

return true
else

return false
end if

Since H+
u is homogeneous, two words representing the same element have the same

length, thus there is a finite number of words that represent the same element of H+
u and

Algorithm 4.2 always terminates.
In order to prove Theorem 4.2 for the object u, we first compute a presentation of

B31(u, u) by the Reidemeister-Schreier method for groupoids (cf. Appendix A.2). We start
from a presentation of the groupoid B31, for instance that of Theorem 3.27.

As we want atomic loops to appear as generators, we need to choose the Schreier transver-
sal accordingly. We use the following lemmas concerning atomic loops in the category C31.

Lemma 4.5. Let s be an atom of C31, the atomic loop λ(s) has length two in C31.

Proof. Let s := (a, b). We denote by u the source of s, and by v its target. The morphism

s# is given by (a, b)# = (ac
8b−1

, b). We know that

ac
7
bc

7
ab = c⇒ c7ac

7
bc

7
a = abc7a = c8b−1

and so ac
8b−1

= aabc
7a = a(ba

c8 )c7 = avc
7
. The morphism s## is then given by ((avc

7
)avc

7
, b).

Because of Lemma 2.8, a and avc
7
commute, so s## = (a(vc

7)2 , b). Since (vc7)2 = c15 is
central, we have s## = s as claimed. □

Lemma 4.6. Let u be an object of B31. There is a Schreier transversal T rooted in u and
containing all atoms with source u. In particular the atomic loops of u appear as generators
of the presentation of B31(u, u) induced by T .
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Proof. First, note that if a Schreier transversal T contains an atom s with source u, then
Lemma 4.5 gives that γ(s#) = ss# = λ(s) with the notation of Lemma A.12.

Now, thanks to Proposition 3.3, all atoms with source u have different targets. We can
thus consider a Schreier transversal T rooted in u and containing all atoms with source
u. □

Let T be a Schreier transversal rooted in u and containing all atoms with source u.
Let ⟨S∗ | R∗⟩ denote the presentation of B31(u, u) obtained by the Reidemeister-Schreier
method applied to T and to the presentation of Theorem 3.27. Of course, the presentation
⟨S∗ | R∗⟩ is quite redundant. We first want to show that every element of S∗ can be ex-
pressed as a word in the atomic loops. For this we repeatedly apply Tietze transformations,
as in Algorithm 4.3.

Algorithm 4.3 Reduction of generators

Input: A group presentation ⟨S | R⟩ and a subset S′ of S
Output: A group presentation ⟨S′ | R′⟩ equivalent to the first by Tietze transformation,
or no output.
while S′ ̸= S do

choose r ∈ R a relator with only one letter a not belonging to S′ ∪ S′−1

replace in R every occurrence of a by its expression in S′ using the relator r.
remove the relator r from R
remove the letter a from S.

end while
return the presentation ⟨S′ | R⟩

The fact that this algorithm terminates for each object of B31, which is again checked
by computer, proves the following result

Proposition 4.7. Let u be an object of B31. The atomic loops of u generate the group
B31(u, u). In particular the natural morphism Hu → B31(u, u) is surjective.

By applying Algorithm 4.3 to the presentation ⟨S∗ | R∗⟩, we obtain a presentation
⟨Xu | R′

u⟩ of the group B31(u, u). In order to prove Theorem 4.2 for the object u, it is
sufficient to prove that every relator of R′

u is in fact trivial in Hu. This will prove that the
morphism Hu → B31(u, u) is injective.

Because the defining presentation ofH+
u is right-complemented, we can consider a right-

reversing algorithm in the sense of [DDGKM, Definition 4.21]. The main idea is that the
relation aθ(a, b) = bθ(b, a) implies a−1b = θ(a, b)θ(b, a)−1. We can use these type of relation
in order to simplify words in Xu ∪X−1

u .

Algorithm 4.4 Right-reversing in H+
u ([DDGKM, Algorithm II.4.33])

Input: A word w in Xu ∪X−1
u

Output: A fraction fg−1 with f, g ∈ H+
u representing w in Hu, or no output.

while there is some subword of the form a−1b in w do
put j the position in w of the first subword of the form a−1b in w
if a = b then
remove the subword a−1b from w

else
replace a−1b with θ(a, b)θ(b, a)−1 in w at position j

end if
end while
return w.
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Algorithm 4.4 doesn’t always terminate: it may loop indefinitely. If it terminates, its
output is a fraction, and we should check that it is trivial. Of course this may be quite
long as algorithm 4.2 is far from optimal. This process can be sped up by “partially
simplifying” at each step. The solution to the word problem given by Algorithm 4.2 allows
for the computation of longest common divisors of elements of H+

u . A general word in
Xu ∪X−1

u can be written as a product of (short) fractions. We can simplify these fractions
at each step of Algorithm 4.4.

We checked by computer that Algorithm 4.4 terminates on every relator in R′
u, that is

every relator can be expressed as a right-fraction of elements of H+
u . Finally, we use the

following algorithm to prove that every relator, written as a fraction, is trivial in Hu.

Algorithm 4.5 Partial solution to the word problem in Hu

Input: A fraction fg−1 with f, g ∈ H+
u .

Output: true If there is some n ∈ H+
u such that fn = gn. No output otherwise.

put i := 1
Compute the set Si of words of length i in Xu

while fn ̸= gn for all n ∈ Si do
put i := i+ 1
Compute the set Si of words of length i in Xu

end while
return true

This algorithm is useful since the monoid H+
u may not be cancellative: we can have

fn = gn (and thus fg−1 = 1 in Hu) without having f = g in H+
u .

The fact that Algorithm 4.5 returns true for all relators of the presentation of B31(u, u)
finally proves that Theorem 4.2 holds for u.

4.2. Computational data. We consider the following elements in C8



α1 =
1
2(1,−1,−1,−1,−1,−1,−1, 1)

α2 = (1, 1, 0, 0, 0, 0, 0, 0)

α3 = (−1, 1, 0, 0, 0, 0, 0, 0)

α4 = (0,−1, 1, 0, 0, 0, 0, 0)

α5 = (0, 0,−1, 1, 0, 0, 0, 0)

α6 = (0, 0, 0,−1, 1, 0, 0, 0)

α7 = (0, 0, 0, 0,−1, 1, 0, 0)

α8 = (0, 0, 0, 0, 0,−1, 1, 0)

α9 = (1, 0, 1, 0, 0, 0, 0, 0)



α10 = (0, 0,−1, 0, 1, 0, 0, 0)

α11 = (1, 0, 0, 0, 0, 1, 0, 0)

α12 =
1
2(−1,−1,−1,−1,−1, 1,−1, 1)

α13 = (0, 1, 0, 0, 0, 1, 0, 0)

α14 =
1
2(−1,−1,−1,−1,−1,−1, 1, 1)

α15 = (0, 1, 0, 0, 0, 0, 1, 0)

α16 =
1
2(1,−1, 1,−1,−1,−1, 1, 1)

α17 =
1
2(1,−1,−1, 1,−1,−1, 1, 1)

α18 =
1
2(−1, 1,−1,−1, 1,−1, 1, 1)

And for each i ∈ [[1, 18]], we consider the reflection si of C8 given by si(x) = x−2 ⟨x,αi⟩
⟨αi,αi⟩αi

(where ⟨., .⟩ is the usual hermitian product on C8). The set s1, . . . , s8 generates a subgroup
W of GLn(C) isomorphic to the complex reflection group G37 and which contains all the
si for i ∈ [[1, 18]]. A Coxeter element of W is given by c = s1s2s3s4s5s6s7s8.

A system of representatives of ϕ2-orbits of objects of the category C31 =M(c)152 is given
by the following elements of W .

u1 = s10s12s13s18

u2 = s9s10s12s16

u3 = s3s11s12s16

u4 = s7s8s14s15


u5 = s3s7s11s12

u6 = s3s4s7s11

u7 = s3s4s7s17

u8 = s3s7s12s17

.
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As we want links between the different presentations we obtain for each representative,
we give explicit isomorphisms between the different groups B31(ui, ui). For this we use the
following graph in B31

u2 u8

u3 u1oo

OO

��

// u5

OO

��

// u7

u4 u6

where each arrow is a simple morphism in C31 (because of Proposition 3.3, a simple
morphism is uniquely determined by its source and target). For each i, j ∈ [[1, 8]], this
graph induces a well defined isomorphism φi,j : B31(ui, ui) → B31(uj , uj) which preserves
braided reflections.

For i, j ∈ [[1, 8]], we have by definition φi,j = φi,1φ1,j , so we only need to describe
morphisms of the form φi,1 and φ1,i for i ∈ [[1, 8]].

In the case of the orbit of u1, we give expressions of the atomic loops in the generators
σ1, . . . , σ8 of the Artin group associated to W . Replacing σ1, . . . , σ8 with s1, . . . , s8 gives
a set of elements in W which generate a copy of G31. We also give a family of vectors in
C4 such that the 2-reflections associated to the orthogonal hyperplanes of these vectors (in
the usual hermitian product) generate a group isomorphic to G31.

Futhermore, we know that the full-twist in B31(u, u) is given by ∆60(u) by Lemma 2.28.
By [Gar23, Theorem 1.2 and Proposition 8.1], every root of the full-twist in B(G31) is
conjugate to a power of either a 20-th root or a 24-th root of the full-twist. Furthermore,
the full-twist admits 20-th roots and 24-th roots. For each presentation we obtain, we give
an explicit 20-th root (resp. 24-th root) of the full-twist as a word in the generators. If
ρ ∈ B31(u, u) is a 24-th root of the full-twist ∆60(u), then ρ6 is a 4-th root of ∆60(u). By
Proposition 1.27 and Theorem 4.1, we get that ρ6 = ∆15

2 (u) is a generator of Z(B31(u, u)).

4.3. Presentation associated to representatives of the ϕ2-orbits.

4.3.1. Orbit of u1. For the first orbit, we recover the presentation of B(G31) conjectured in
[BMR98, Table 3] and [BM04, Conjecture 2.4]. The object u1 has 5 atomic loops s, t, u, v, w.
The relations we obtain are as follows

ts = st, vt = tv, wv = vw,

suw = uws = wsu,

svs = vsv, vuv = uvu, utu = tut, twt = wtw.

This presentation is usually represented by the following diagram (corresponding to the
Broué-Malle-Rouquier diagram for the reflection group G31).

ws

uv t

In the Artin group associated to W , the atomic loops s, t, u, v, w can be expressed as
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s := (σ1σ4)
σ2σ3σ1σ4σ5σ4σ2σ3σ4σ5σ6σ7σ8

t := (σ4σ2)
σ2σ3σ4σ5σ6σ7

u := (σ4σ2)
σ2σ3σ1σ4σ5σ4σ2σ3σ4σ5σ6σ5σ7σ6σ8σ7σ6

v := (σ1σ3)
σ3σ4σ5σ4σ6σ7

w := (σ2σ3)
σ1σ4σ2σ3σ1σ4σ5σ4σ2σ3σ1σ4σ5σ6σ5σ4σ2σ3σ1σ4σ5σ6σ7σ6σ5σ4σ2σ3σ4σ5σ6σ7σ8σ7σ6

In C4, the 2-reflections associated with the following roots (in the usual hermitian prod-
uct) generate a subgroup of GL4(C) which is isomorphic to G31.

αs :=
1

2


2

1 + i
−1− i

0

 , αt :=


1
−1
i
−1

 , αu :=


1
0

−1− i
−i

 , αv :=
1

2


2

1− i
1− i
0

 , αw :=


1
i
−1
−1


The monoid H+

u1
given by the above presentation is not cancellative: we have tuwtuw ̸=

uwtuwt and stuwtuw = suwtuwt in H+
u1
. Thus H+

u1
cannot be a Garside monoid.

The submonoid L+
u1

of C31(u1, u1) generated by s, t, u, v, w is cancellative, but it doesn’t
admit right-lcms: we know that utu = tut is the shortest common multiple of t and u. If
right-lcms exists in L+

u1
, then tut must be the right-lcm of t and u. We would then have

tut ⪯ tuwtuw ⇒ t ⪯ wtuw

in L+
u1

by cancellativity. We can check that t ⪯ wtuw doesn’t hold in L+
u1
: the element

t−1wtuw does lie in C31(u1, u1), but not in the submonoid L+
u1
.

Maximal roots of the full-twist are given by

Maximal regular number d 20 24
d-th root of ∆60 stuvws stuvw

In particular, we get that (stuvw)6 = ∆15
2 (u1) generates Z(B31(u1, u1)).

4.3.2. Orbit of u2. The object u2 admits 7 atomic loops a, b, c, s, t, v, w, with relations as
follows: 

sv = vb = bs, av = vc = ca,

wv = vw, st = ts, tv = vt, tb = bt,

was = swa = asw, wcb = bwc = cbw,

wtw = twt, ata = tat, aba = bab, tct = ctc,

swav = cabw.

The last line of relations can be omitted, as it is implied by the others. The monoid H+
u2

given by this presentation is not cancellative: we have bwab ̸= abwa and cbwab = cabwa
in H+

u2
. Thus H+

u2
cannot be a Garside monoid.

The submonoid L+
u2

of C31(u2, u2) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that aba = bab is the shortest common multiple of a
and b. If right-lcms exists in L+

u2
, then aba must be the right-lcm of a and b. We would

then have
aba ⪯ abwa⇒ a ⪯ wa

Which does not hold in L+
u2

(it doesn’t even hold in C31(u2, u2)).
The relations defining H+

u2
give in particular b = v−1sv = sv and c = av in Hu. By

deleting these generators, we get that B31(u2, u2) is generated by a, s, t, v, w, with relations
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as follows: 
wv = vw, st = ts, vt = tv,

swa = was = asw,

twt = wtw, ata = tat, vav = ava, svs = vsv.

We recover the presentation of Section 4.3.1, summarized in the diagram

sw

at v

Again, we know that neither the monoid given by this presentation, neither the submonoid
of L+

u2
generated by a, s, t, v, w are Garside monoids.

The morphisms φ2,1 and φ2,1 are given by

φ2,1 :


s 7→ s a 7→ uw

t 7→ t b 7→ sv

v 7→ v c 7→ uwv

w 7→ w

and φ1,2 :



s 7→ s

t 7→ t

u 7→ as

v 7→ b

w 7→ w

Maximal roots of the full-twist are given by

Maximal regular number d 20 24
d-th root of ∆60 stwavs stwav

In particular, we get that (stwav)6 = ∆15
2 (u2) generates Z(B31(u2, u2)).

4.3.3. Orbit of u3. The object u3 admits 7 atomic loops d, e, f, t, u, v, w, with relations as
follows: 

ue = ef = fu, wt = tf = fw,

df = fd, wv = vw, tv = vt, vf = fv,

udw = dwu = wud, dte = ted = edt,

utu = tut, uvu = vuv, dvd = vdv, eve = vev,

wtud = edwt.

The last line of relations can be omitted, as it is implied by the others. The monoid H+
u3

given by this presentation is not cancellative: we have tudt ̸= udtu and wtudt = wudtu in
H+

u3
. Thus H+

u3
cannot be a Garside monoid.

The submonoid L+
u3

of C31(u3, u3) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that utu = tut is the shortest common multiple of t
and u. If right-lcms exists in L+

u3
, then utu must be the right-lcm of u and t. We would

then have
tut ⪯ tudt⇒ t ⪯ dt

Which does not hold in L+
u3

(it doesn’t even hold in C31(u3, u3)).
The relations defining H+

u3
give in particular f := wt and e = fu = wtu in Hu3 . By

deleting these generators, we get that B31(u3, u3) is generated by d, t, u, v, w, with relations
as follows: 

wv = vw, tv = vt,

udw = wud = dwu,

uvu = vuv, tut = utu, dvd = vdv, wtw = twt,

udtu = tudt.
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The monoid given by this presentation is not cancellative: we have tdwt ̸= wtdw while
tdwtut = wtdwut. The morphisms φ3,1 and φ1,3 are given by

φ3,1 :


t 7→ t d 7→ su

u 7→ u e 7→ wtu

v 7→ v f 7→ wt

w 7→ w

and φ1,3 :



s 7→ dw

t 7→ t

u 7→ u

v 7→ v

w 7→ w

Maximal roots of the full-twist are given by

Maximal regular number d 20 24
d-th root of ∆60 wtudvw tudvw

In particular, we get that (tudvw)6 = ∆15
2 (u3) generates Z(B31(u3, u3)).

4.3.4. Orbit of u4. The object u4 admits 12 atomic loops g, h, k, l,m, n, o, p, s, t, u, v, with
relations as follows:

gk = hg = kh, gs = lg = sl, gn = tg = nt, gp = vg = pv, ht = mh = tm,

kn = mk = nm, lo = tl = ot, so = ns = on, ut = tp = pu, uv = nu = vn,

gm = mg, go = og, hn = nh, st = ts, tv = vt, np = pn,

hus = shu = ush, hvo = ohv = voh, kpo = okp = pok,

lmv = mvl = vlm, smp = mps = psm,

hph = php, svs = vsv, mom = omo,

gnp = utv, htvl = lomv, khnps = lgomp, knps = somp,

khnps = utvsm, khn = tgm, khpo = vgok, lgomp = utvsm,

lgo = nst, lgmp = pvsm, usht = mhps, uvsh = ohuv.

The last three lines of relations can be omitted, as they are implied by the others. The
monoid H+

u4
given by this presentation is not cancellative: we have hpsh ̸= pshp and

mhpsh = mpshp in H+
u4
. Thus H+

u4
cannot be a Garside monoid.

The submonoid L+
u4

of C31(u4, u4) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that hph = php is the shortest common multiple of h
and p. If right-lcms exists in L+

u4
, then hph must be the right-lcm of h and p. We would

then have
hph ⪯ hpsh⇒ h ⪯ sh

Which does not hold in L+
u4

(it doesn’t even hold in C31(u4, u4)).The relations defining H+
u4

give in particular

g = nt = uvt, k = hg = h(u
vt), l = gs = utvs, m = ht, n = uv, o = ns = uvs, p = ut

in Hu4 . By deleting these generators, we get that B31(u4, u4) is generated by h, s, t, u, v,
with relations as follows:

vt = tv, st = ts,

ush = shu = hus,

svs = vsv, vuv = uvu, utu = tut, tht = hth,

shvs = vshv.

The monoid given by this presentation does not admit right-lcms. We have shvs = vshv
and vsv = svs are common right-multiples of v and s, but their longest common divisor is
vs,which is not a common righ-multiple of s and v. This also proves that the submonoid
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of C31(u4, u4) generated by h, s, t, u, v does not admit right-lcms. The morphisms φ4,1 and
φ1,4 are given by

φ3,1 :



g 7→ uvt o 7→ uvs

h 7→ ws p 7→ ut

k 7→ uwtuwvsuvt s 7→ s

l 7→ utvs t 7→ t

m 7→ wst u 7→ u

n 7→ uv v 7→ v

and φ1,3 :



s 7→ s

t 7→ t

u 7→ u

v 7→ v

w 7→ hu

Maximal roots of the full-twist are given by

Maximal regular number d 20 24
d-th root of ∆60 tuvshv tuvsh

In particular, we get that (tuvsh)6 = ∆15
2 (u4) generates Z(B31(u4, u4)). We also have

((tuvsh)t)2 = (uvsht)2 = ∆5(u4) in this case.

4.3.5. Orbit of u5. The object u5 admits 10 atomic loops b, f, g, n, p, s, t, u, v, w, with rela-
tions as follows:

ut = pu = tp, uv = nu = vn, gp = pv = vg,

gn = tg = nt, sv = vb = bs, wt = fw = tf,

st = ts, wv = vw, fv = vf, pn = np, tv = vt, tb = bt,

uws = suw = wsu, gfb = fbg = bgf, spf = fsp = pfs, wbn = nwb = bnw,

ufu = fuf, gsg = sgs, suw = wsu, sns = nsn, fnf = nfn

utv = gpn, uwsv = bsnw, gnfb = wtbg, wsut = pufs, pfsv = bsgf.

The last line of relations can be omitted, as it is implied by the others. The monoid H+
u5

given by this presentation is not cancellative: we have ufsu ̸= fsuf and pufsu = pfsuf
in H+

u5
. Thus H+

u5
cannot be a Garside monoid.

The submonoid L+
u5

of C31(u5, u5) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that ufu = fuf is the shortest common multiple of f
and u. If right-lcms exists in L+

u5
, then ufu must be the right-lcm of u and f . We would

then have
ufu ⪯ ufsu⇒ u ⪯ su

Which does not hold in L+
u5

(it doesn’t even hold in C31(u5, u5)).
The relations defining H+

u5
give in particular

b = sv, f = wt, g = uvt, n = uv, p = ut

in Hu5 . By deleting these generators, we get that B31(u5, u5) is generated by s, t, u, v, w,
with the same relations as in H+

u1
: we recover once again the obtained in Section 4.3.1.

The morphisms φ5,1 and φ1,5 are given by

φ5,1 :



s 7→ s b 7→ sv

t 7→ t f 7→ wt

u 7→ u g 7→ uvt

v 7→ v n 7→ uv

w 7→ w p 7→ ut

and φ1,5 :



s 7→ s

t 7→ t

u 7→ u

v 7→ v

w 7→ w

Maximal roots of the full-twist are given by the same expressions as for the object u1.
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4.3.6. Orbit of u6. The object u6 admits 10 atomic loops b, f, g, n, o, p, q, r, s, v, with
relations as follows:

vg = pv = gp, qn = fq = nf, qr = gq = rg, so = ns = on, vb = sv = bs,

vf = fv, qb = bq, sr = rs, np = pn, og = go,

vro = ovr = rov, qop = pqo = opq, spf = fsp = pfs,

bgf = fbg = gfb, brn = nbr = rnb,

vqv = qvq, vnv = nvn, qsq = sqs, sgs = gsg, ngn = gng, pqo = opq,

bsgf = pvfb, bsro = onvr, fqsp = onpf, fqbr = rgnb, pvqo = rovg

The last line of relations can be omitted, as it is implied by the others. The monoid H+
u6

given by this presentation is not cancellative: we have nvrn ̸= vrnv and onvrn = ovrnv
in H+

u6
. Thus H+

u6
cannot be a Garside monoid.

The submonoid L+
u6

of C31(u6, u6) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that nvn = vnv is the shortest common multiple of n
and v. If right-lcms exists in L+

u6
, then nvn must be the right-lcm of n and v. We would

then have
nvn ⪯ nvrn⇒ n ⪯ rn

Which does not hold in L+
u6

(it doesn’t even hold in C31(u6, u6)).
The relations defining H+

u6
give in particular

b = sv, f = qn, o = ns, p = vg, r = qg

in Hu6 . By deleting these generators, we get that B31(u6, u6) is generated by g, n, q, s, v,
with relations as follows:

nsn = sns, vgv = gvg, vsv = svs, qnq = nqn, vnv = nvn,

qgq = gqg, ngn = gng, qsq = sqs, sgs = gsg, vqv = qvq

gnvg = vgnv = nvgn, gqsg = qsgq = sgqs, nsgn = gnsg = sgns

vqsv = svqs = qsvq, qnvq = nvqn = vqnv, vgqnsv = svgqns

gqnsvgs = ngqnsvg

The monoid given by this presentation does not admit right-lcms. We have that vgqnsv =
svgqns and vsv = svs are common right multiples of s and v, but their longest common
left-divisor is sv, which is not a common right-multiple of s and v. This also proves
that the submonoid of C31(u6, u6) generated by g, n, q, s, v does not admit right-lcms. The
morphisms φ6,1 and φ1,6 are given by

φ6,1 :



b 7→ sv p 7→ ut

f 7→ wt q 7→ tuwtv

g 7→ uvt r 7→ ustuwtv

n 7→ uv s 7→ s

o 7→ uvs v 7→ v

and φ1,6 :



s 7→ s

t 7→ pvn

u 7→ vn

v 7→ v

w 7→ pvnf

Maximal roots of the full-twist are given by

Maximal regular number d 20 24
d-th root of ∆60 svgqns svgqn

In particular, we get that (svgqn)6 = ∆15
2 (u6) generates Z(B31(u6, u6)). We also have

svgqns = ∆3
2(u6) in this case.
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4.3.7. Orbit of u7. The object u7 admits 7 atomic loops g, k,m, n, o, p, s, with relations as
follows: 

on = so = ns, kn = nm = mk,

go = og, gm = mg, pn = np,

pok = okp = kpo, psm = smp = mps,

omo = mom, gpg = pgp, gkg = kgk, gsg = sgs, gng = ngn,

kpon = somp.

The last line of relations can be omitted, as it is implied by the others. The monoid H+
u7

given by this presentation is not cancellative: we have ompo ̸= mpom and sompo = smpom
in H+

u7
. Thus H+

u7
cannot be a Garside monoid.

The submonoid L+
u7

of C31(u7, u7) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that omo = mom is the shortest common multiple of m
and o. If right-lcms exists in L+

u7
, then omo must be the right-lcm of m and o. We would

then have
omo ⪯ ompo⇒ o ⪯ po

Which does not hold in L+
u7

(it doesn’t even hold in C31(u7, u7)). The relations defining
H+

u7
give in particular o = ns and k = nm in Hu7 . By deleting these generators, we get

that B31(u7, u7) is generated by g,m, n, p, s, with relations as follows:
gm = mg, pn = np,

smp = psm = mps,

sns = nsn, pgp = gpg, gsg = sgs, mnm = nmn, gng = ngn

sgns = nsgn = gnsg.

The monoid given by this presentation does not admit right-lcms. We have that sns = nsn
and sgns = nsgn are common right multiples of s and n, but their longest common left-
divisor is ns, which is not a common right-multiple of s and n. This also proves that
the submonoid of C31(u7, u7) generated by g,m, n, p, s does not admit right-lcms. The
morphisms φ7,1 and φ1,7 are given by

φ7,1 :



g 7→ uvt p 7→ ut

k 7→ uwtuwvsuvt s 7→ s

m 7→ wst

n 7→ uv

o 7→ uvs

and φ1,7 :



s 7→ s

t 7→ gn

u 7→ pgn

v 7→ pg

w 7→ pgkpn

Maximal roots of the full-twist are given by

Maximal regular number d 20 24
d-th root of ∆60 gnmpsm gnmps

In particular, we get that (gnmps)6 = ∆15
2 (u7) generates Z(B31(u7, u7)).

4.3.8. Orbit of u8. The object u8 admits 6 atomic loops g,m, n, p, s, t, with relations as
follows:

tg = nt = gn,

ts = st, pn = np, gm = mg,

psm = smp = mps,

tpt = ptp, tmt = mtm, pgp = gpg, sns = nsn, sgs = gsg, nmn = mnm.

The monoid H+
u8

given by this presentation is not cancellative: we have psgpsg ̸= gpsgps
and mpsgpsg = mgpsgps in H+

u8
. Thus H+

u8
cannot be a Garside monoid.
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The submonoid L+
u8

of C31(u8, u8) generated by the atomic loops is cancellative, but it
doesn’t admit right-lcms: we know that pgp = gpg is the shortest common multiple of p
and g. If right-lcms exists in L+

u8
, then omo must be the right-lcm of m and o. We would

then have
gpg ⪯ gpsgps⇒ g ⪯ sgps

Which does not hold in L+
u8

(it does even hold in C31(u8, u8), but g−1sgps is not generated
positively by atomic loops). The relations defining H+

u8
give in particular t = gn in Hu8 .

By deleting this generator, we get that B31(u8, u8) is generated by g,m, n, p, s, with the
same relations as in the end of Section 4.3.7. The morphisms φ8,1 and φ1,8 are given by

φ8,1 :



g 7→ uvt

m 7→ wst

n 7→ uv

p 7→ ut

s 7→ s

t 7→ t

and φ1,8 :



s 7→ s

t 7→ t

u 7→ tp

v 7→ ntp

w 7→ mtmp

Maximal roots of the full-twist are given by the same expressions as for the object u7.
Furthermore, we also have (gnmps)2 = ∆5

2(u8) in this case.

Remark 4.8. As was pointed out to us by Jean Michel, the presentations with 5 gen-
erators that we give here are related by the Hurwitz action of the usual braid groups
on the words giving 24-roots of the full-twist, as in [MM10, Section 6]. By identify-
ing the atomic loops we consider with their image in B31(u1, u1), we obtain for instance
that (s, t, u, v, w), (s, t, w, a, v), (t, u, d, v, w) and (t, u, v, s, h) lie in the same Hurwitz or-
bit. The words (s, u, v, w, t) and (s, v, g, q, n) also lie in the same Hurwitz orbit, as well as
(u, v, w, t, s) and (g, n,m, p, s).

Appendix A. The Reidemeister-Schreier method for groupoids

A.1. Presentations of categories and groupoids.

Definition A.1. ([DDGKM, Definition II.1.4 and Definition II.1.32])
An oriented graph (or precategory) is a pair of sets (O,S) endowed with two maps
s, t : S → O. The elements of O are called objects and those of S are called elements (or
morphisms, or arrows). The maps s and t are called source and target, respectively.

A morphism between two oriented graphs (O,S) and (O′,S ′) is given by two maps
ϕ0 : O → O′, ϕ1 : S → S ′ which preserve the source and target:

∀f ∈ S, s(ϕ1(f)) = ϕ0(s(f)) and t(ϕ1(f)) = ϕ0(t(f)).

Note that we make no assumption regarding the existence of loops or multiple arrows
with the same source and target. In practice, we often amalgamate an oriented graph
(O,S) with its set of arrows S. The set of objects will then be denoted by Ob(S) like for
categories. We will sometimes denote by S(u,−) (resp. S(−, v), S(u, v)) the set of arrows
in S with source u (resp. with target v, with source u and target v).

Definition A.2. ([DDGKM, Definition II.1.28])
Let S be an oriented graph. For u, v ∈ Ob(S), a path of length p ⩾ 1 in S from u to v is
a finite sequence (g1, . . . , gp) of elements of S such that

s(g1) = u, t(gp) = v and t(gi) = s(gi+1), ∀i ∈ [[1, p− 1]]

For u ∈ Ob(C), we also define an empty path from u to itself, denoted by 1u, and of
length 0 by definition.

Definition A.3. ([DDGKM, Definition II.1.28 and Proposition 1.33])
Let S be an oriented graph. The free category on S, denoted by S∗, is defined as follows
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- The objects are the objects of S.
- The morphisms S∗(u, v) are the paths from u to v in S.
- Composition is given by concatenation of paths.
- The identity of some object u is the empty path 1u.

This category is free in the following sense: Let S be an oriented graph, and let C be a
category. Any morphism of oriented graphs ϕ : S → C induces a unique functor S∗ → C,
sending a path (g1, . . . , gp) to the composition ϕ1(g1) · · ·ϕ1(gp) in C. In practice, a path
(f1, . . . , fp) will often be denoted as a formal composition f1 · · · fp so that we have

ϕ(f1 · · · fp) = ϕ1(f1) · · ·ϕ1(fp).
This convenient definition of free category allows for defining relations and presentations

of categories. Recall that a congruence on a category C is an equivalence relation ≡ on C
which is compatible with composition, that is, the conjunction of f ≡ f ′ and g ≡ g′ implies
fg ≡ f ′g′ (if fg and f ′g′ are defined of course). If ≡ is a congruence on a category C, one
can form the quotient category C/ ≡. It has the same objects as C, and its morphisms are
≡-equivalence classes of morphisms in C.

Definition A.4. ([DDGKM, Definition II.1.36 and Lemma II.1.37])
If C is a category, a relation on C is a pair (g, h) of morphisms in C sharing the same
source and the same target. If C is a category, and R is a family of relations on C, there
exists a smallest congruence ≡+

R of C which includes R.

The congruence ≡+
R is the reflexive-transitive closure of

{(fgh, fg′h) | (g, g′) ∈ R or (g′, g) ∈ R}.
For readability purposes, it is convenient to write a relation (f, g) as an equality f = g

instead of a couple of paths. We use this convention from now on.

Definition A.5. ([DDGKM, Definition II.1.38])
A category presentation is a pair (S,R), where S is an oriented graph, and R is a set
of relations on S∗. We call S the generators and R the relations.
If (S,R) is a category presentation, the quotient category S/ ≡+

R is denoted by ⟨S | R⟩+.

Remark A.6. If we consider a graph S with one object, we recover the classical notion of
monoid presentation.

Let (S,R) be a categorical presentation, and let C be a category. Any morphisms of
oriented graphs ϕ : S → C such that

∀f1 · · · fp = g1 · · · gq ∈ R, ϕ1(f1) · · ·ϕ1(fp) = ϕ1(g1) · · ·ϕ1(gp) ∈ C
induces a unique functor from the presented category ⟨S | R⟩+ to C. A first application of
this property is the following lemma.

Lemma A.7. Let C := ⟨S | R⟩+ be a presented category. If R consists of relations
between paths of the same length in S∗, then the category C is homogeneous. We then say
that ⟨S | R⟩+ is a homogeneous presentation.

Proof. First, we note that the category S∗ is homogeneous. The length functor is given by
the length of the paths. By assumption, this functor induces a well-defined functor from
C to (Z⩾0,+), such that elements of S are sent to 1. This functor is a length functor for C
since it is generated by S. □

The notion of categorical presentation is useful for defining enveloping groupoids: let
C = ⟨S | R⟩+ be a presented category. We consider S a formal copy of S, with source and
target reversed. We consider the set I(S) of relations on S ⊔ S defined by

∀x ∈ S, xx = 1s(x) and xx = 1t(x)
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Lemma A.8. ([DDGKM, Definition II.3.3 and Proposition II.3.5])
The category G(C) := ⟨S ⊔S | R∪ I(S)⟩+ is a groupoid, called the enveloping groupoid
of C. The inclusion map S ↪→ S ∪ S induces a functor ι : C → G(C). Every functor

ϕ : C → G where G is a groupoid induces a unique functor ϕ̃ : G(C) → C such that ϕ̃◦ ι = ϕ.

This universal property of the enveloping groupoids ensures that it depends only on C
and not on its presentation. By convention, if C = ⟨S | R⟩+ is a presented category, the
presentation of the enveloping groupoid of C will be denoted by ⟨S | R⟩.

Remark A.9. Every category C admits a standard presentation, where the generators are
all the morphisms in C, and the relations are all couples (fg, h) for f, g, h ∈ C satisfying
fg = h. Thus the enveloping groupoid can be defined for any category.

A.2. Schreier transversal and presentation. Let G = ⟨S | R⟩ be a presented connected
groupoid. We denote by F(S) := ⟨S | ∅⟩ the free groupoid on the graph S. The identity
S → S induces a quotient map φ : F(S) → G. Just like for free groups, a morphism in
F(S) is represented by a unique reduced path , that is a path comporting no subpath of
the form ss−1 or s−1s for s ∈ S.

Definition A.10. Let u be an object of F(S). A Schreier transversal of F(S) rooted
in u is a family of reduced paths {mv}v∈Ob(F(S)) satisfying:

- For all object v of S, the path mv has source u and target v.
- The family {mv} is stable under prefix. It particular mu = 1u.

Remark A.11. Since G is connected, it is also the case of S and F(S). In particular, a
Schreier transversal of F(S) rooted in u exists for all object u of F(S).

Let u0 be an object of F(S), and let {mv} be a Schreier transversal in F(S) rooted in
u0. For s ∈ S(u, v), we define γ(s) := musm

−1
v ∈ F(S)(u0, u0). Let S1 be the set of all

elements γ(s) ̸= 1u0 for s ∈ S.

Lemma A.12. The group G(u0, u0) is generated by the φ(γ(s)) for γ(s) ∈ S1.

Proof. Let g ∈ G(u0, u0). Since G is generated by S, we can write

g = sε11 · · · sεkk
with si ∈ S for i ∈ [[1, k]] and εi ∈ {±1} for i ∈ [[1, k]]. We denote by ui the target of sεii
for i ∈ [[1, k − 1]]. In F(S) we have

sε11 · · · sεkk = sε11 m
−1
u1
mu1 · · ·m−1

uk−1
muk−1

sεkk

= mu0s
ε1
1 m

−1
u1
mu1 · · ·m−1

uk−1
muk−1

sεkk m
−1
u0

= γ(s1)
ε1 · · · γ(sk)εk .

Thus, we have g = φ(γ(s1))
ε1 · · ·φ(γ(sk))εk in G(u0, u0). □

As G is a groupoid, every relation defining G can be rewritten as a relation of the form

sε11 · · · sεkk = 1u

where si ∈ S and εi ∈ {±1} for i ∈ [[1, k]], and u is the source of sε11 .

Proposition A.13. (Reidemeister-Schreier method for groupoids)
Let S∗ be a set of elements γ(s)∗ in one-to-one correspondence with those of S1. Let also
R∗ be the set of all relations

γ∗(s1)
ε1 · · · γ∗(sk)εk = 1

where sε11 · · · sεkk = 1u is in R. The map S∗ → G(u0, u0) sending γ(s)∗ to φ(γ(s)) induces
an isomorphism of groups between G∗ := ⟨S∗ | R∗⟩ and G(u0, u0).
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Proof. First, we prove that the map γ(s)∗ 7→ φ(γ(s)) is compatible with the set of relations
R∗. Let γ∗(s1)

ε1 · · · γ∗(sk)εk = 1 be in R∗. We have an equality sε11 · · · sεkk = 1u in G, and
we have

φ(γ(s1))
ε1 · · ·φ(γ((sk))εk = φ(mu)s

ε1
1 · · · sεkk φ(mu)

−1 = 1u0 .

Let π : G∗ → G(u0, u0) be the morphism induced by γ(s)∗ 7→ φ(γ(s)). We know that π is
surjective by Lemma A.12.

Conversely, the map S → S∗ sending s to γ(s)∗ induces a functor ϕ : F(S) → G∗. Let
v be an object of F(S). We show that ϕ sends mv to 1 by induction on the length of mv

as an S-path. First if mv = sε11 has length 1, we have ϕ(sε11 ) = mu0mvm
−1
v = 1. Now

if mv = sε11 · · · sεkk is a decomposition of mv on S, we denote by v′ the source of sεkk . By

definition of a Schreier transversal we have mv′ = sε11 · · · sεk−1

k−1 and ϕ(mv′) = 1 by induction

hypothesis. As we also have ϕ(sεkk ) = mv′s
εk
k m

−1
v = mvm

−1
v = 1, we get ϕ(mv) = 1.

By definition of the set R∗, ϕ induces a functor ϕ : G → G∗. We call ι the restriction of
this functor to G(u0, u0). Let γ(s)∗ be a generator of G∗, with s ∈ S(u, v). We have

ι(π(γ(s)∗)) = ι(φ(γ(s)))

= ι(φ(mu)sφ(mv)
−1)

= ϕ(φ(mu))ϕ(s)ϕ(φ(mv))
−1

= ϕ(mu)γ(s)
∗ϕ(mv)

−1 = γ(s)∗

So ι ◦ π induces the identity on the generators of G∗. We get ι ◦ π = 1G∗ and π is
injective. □

Corollary A.14. If G is a finitely presented groupoid, then for every object u of G, the
group G(u, u) is finitely presented.

A.3. The particular case of a subgroup of a presented group. We explain rapidly
how our result on groupoids can be used to recover the classical result of Reidemeister and
Schreier about presentation of subgroups.

Definition A.15. Let G be a group, with H a subgroup. The groupoid of cosets GH of
G and H is the groupoid defined by

- The objects are the right-cosets of H in G.
- Morphisms between two cosets Hg and Hg′ are elements x of G such that Hgx = Hg′.
- Composition is given by the product in G.

The underlying oriented graph of the groupoid of cosets is simply the graph of the action
of G on the right-cosets of H in G. For each coset Hg and each element x of G, we denote
by x[Hg] the unique morphism Hg → Hgx corresponding to the action of the element x.

By definition of GH , there is a natural functor π : GH → G, sending a morphism x[Hg]
to x. For two cosets Hg and Hg′, the set of morphisms between Hg and Hg′ is given by

GH(Hg,Hg′) = {x ∈ G | Hgx = Hg′} = g−1Hg′.

In particular, we obtain that GH(H,H) = H and H is an automorphism group in GH .
Since the natural action of G on H \G is transitive, the groupoid GH is connected. In

particular we can apply the Reidemeister-Schreier method to obtain a presentation of H
from one of GH .

Now, if ⟨X,R⟩ is a presentation of the group G. We denote by F (X) the free group over
the set X. We call X the subgraph of GH made of those morphisms in GH whose image
under π lie in X. The restriction of π to X induces a functor π̃ : F(X ) → F (X). The
inclusion X → GH (resp. X → G) induces a functor φ : F(X ) → GH (resp. ϕ : F (X) →
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G). We have the following commutative square

F(X )
π̃ //

φ

��

F (X)

ϕ
��

GH π
// G

Let m := xε11 · · ·xεkk be a word in F (X), and let Hg be a right-coset. There is a unique
path in F(X ) which starts at Hg and whose image under π̃ is m. This path is given by

x1[Hg]
ε1x2[Hgx

ε1
1 ]ε2 · · ·xk[Hgxε11 · · ·xεk−1

k−1 ]
εk

it will be denoted by m[Hg]. Note that φ(m[Hg]) = ϕ(m)[Hg]. In particular we see that
X generates GH since X generates G.

Lemma A.16. The groupoid of cosets GH admits the presentation ⟨X | R⟩, where the set
R consists of relations r[Hg] = 1Hg, where r = 1 lies in R and Hg lies in H \G.

Proof. Let G be the groupoid presented by X and R. Since the graph X generates GH ,
the natural functor G → GH is surjective on morphisms. Consider now two paths in F(X )

m := xε11 x
ε2
2 · · ·xεkk and m′ := yη11 y

η2
2 · · · yηmm .

By definition, saying that these two paths induce the same morphism in GH amounts to
say that they share the same source and that the two words π̃(m) and π̃(m′) induce the
same element in G.

Suppose that m and m′ induce the same element in GH . We have π̃(m) = π̃(m′) in G,
and there is a finite sequence of words m1, . . . ,mp in F (X) such that

- m1 = π̃(m),mp = π̃(m′)
- For i ∈ [[1, p− 1]], mi is equivalent to mi+1 by the use of one relation in R.

Let Hg be the common source of m and m′ in F(X ). We consider the paths mi[Hg]
in F(X ). We have m1[Hg] = m,mp[Hg] = m′. For i ∈ [[1, p − 1]], the path mi[Hg] is
equivalent to mi+1[Hg] by the use of one relation in R by definition.

Thus m and m′ induce the same element in G, and the natural functor G → GH is then
injective. □

Let now H̃ = ϕ−1(H) ⊂ F (X) be the preimage of H under ϕ. Recall from [LS01,

Proposition I.3.8] that a Schreier transversal (in the classical sense) for H̃ in F (X) is a set
of words T such that

- The map t 7→ Ht is a bijection between T and H \G.
- The set T is stable under prefix (in particular, the empty word lies in T ).

Let T be a Schreier transversal in the classical sense for H̃ and F (X). The set of
paths {t[H]}t∈T is a Schreier transversal rooted in H in F(X ) in the sense of Definition
A.10. Conversely, if {mHg}Hg∈Ob(F(X )) is a Schreier transversal rooted in H in the sense

of Definition A.10, then the set of words {π̃(mHg)}Hg∈H\G is a Schreier transversal for H̃
and F (X) in the classical sense.

Let T be a Schreier transversal for H̃ in F (X), and let {mHg}Hg∈Ob(F(X )) be the asso-
ciated Schreier transversal of F(X ) rooted in H. For g ∈ G, let g denote the element of T
such that Hg = Hg.

The elements of X are given by

X = {x[Hg] | x ∈ X,Hg ∈ Ob(GH)}.
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The set of generators of GH(H,H) = H we obtain by our method is

{γ(x[Hg]) = mHgxm
−1
Hgx | x ∈ X,Hg ∈ Ob(GH)}

={γ(x[Ht]) = mHtxm
−1
Htx | x ∈ X, t ∈ T}

={tx(tx)−1 | x ∈ X, t ∈ T}
which is the same set as given in [LS01, Proposition 4.1]. Following [LS01, Proposition
4.1], we denote γ(t, x) := tx(tx)−1. This element is equal to what we denoted by γ(x[Ht]).

Now for the relators. Let r = 1 be a relation of G. It induces the following family of
relation on GH :

{r[Hg] = 1Hg | Hg ∈ Ob(GH)} = {r[Ht] = 1Ht | t ∈ T}
Each relation r[Ht] = 1Ht induces a relation on GH(H,H), given by

mHtr[Ht]m
−1
Ht = 1

If r = y1y2y3 · · · yk is expressed as a word in X ∪X−1, we have

mHtr[Ht]m
−1
Ht = γ(y1[Ht])γ(y2[Hty1]) · · · γ(yk[Hty1 · · · yk−1])

= γ(t, y1)γ(ty1, y2) · · · γ(ty1 · · · yk−1, yk)

= γ(1, t)γ(t, y1)γ(ty1, y2) · · · γ(ty1 · · · yk−1, yk)γ(ty1 · · · yk, t−1)

since both γ(1, t) and γ(ty1 · · · yk, t−1) are trivial. Thus the relations we obtain with our
method are the same as those given in [LS01, Proposition 4.1], and Proposition A.13 applied
to a groupoid of cosets gives a new proof of [LS01, Proposition 4.1].

Remark A.17. Let X be a transitive G-set, and let x ∈ X. There is a natural isomorphism
between the category of cosets for the stabilizer of x in G and the graph of the action of
G on X. In particular, our method gives a way to compute a presentation of the stabilizer
starting from the graph of the action.
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