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ABSTRACT. The purpose of this note is to prove a conjecture of Shvartsman relating a complex projective
reflection group with the quotient of a suitable complex braid group by its center. Shvartsman originally
proved this result in the case of real projective reflection groups, and we extend it to all complex projective
reflection groups. Our study also allows us to correct a result of Broué, Malle, Rouquier on projective
reflection groups.

INTRODUCTION

Let V be a finite dimensional complex vector space, and let P(V') be the associated projective space.
The image of a subset X C V in P(V') will be denoted by X. For € V, the line spanned by = will be
denoted by [z]. For k a positive integer, the group of k-th complex roots of unity will be denoted by .

Consider a complex reflection group W C GL(V). In order to define the braid group B attached to
W, one first considers the subset X of V' consisting of elements with a trivial stabilizer under the action
of W, and then take the fundamental group of the quotient space X/W.

Similarly, if G C PGL(V) is a projective reflection group (i.e. a finite group which is generated by
images of reflections in PGL(V')), then we can consider the subset X of P(V') consisting of elements
with a trivial stabilizer under the action of G, and then take the fundamental group of the quotient
space X /G. This gives a reasonable definition of a braid group attached to the projective reflection
group G.

In his article [Shv96|, Shvartsman describes the braid group attached to a real projective reflection
group as the quotient of a spherical Artin group by its center. More precisely, if G C PGL(V) is a real
projective reflection group, then there is a maximal real reflection group W C GL(V') which is a lift of
G. The braid group attached to G is then isomorphic to the quotient A/Z(A), where A denotes the
Artin group attached to W [Shv96, Theorem A]. The goal of Shvartsman is to use this realization in
order to compute the possible orders of torsion elements in A/Z(A), which is done in [Shv96, Theorem
BJ.
In [Shv96, Section 4], Shvartsman conjectures that his results could be adapted in the case of complex
projective reflection groups, where the Artin groups should be replaced by a complex braid group. The
second result [Shv96, Theorem B] about the possible orders of torsion elements was generalized to
complex braid groups in [Besl5, Theorem 12.4] and in [Gar23, Proposition 8.2]. We give in this note
an extension to all complex projective reflection groups of [Shv96, Theorem A]:

Theorem 1 (Theorem . Let G € PGL(V) be an irreducible projective reflection group, and let X
be the subset of P(V) consisting of elements with a trivial stabilizer under the action of G. Let also
W C GL(V) be the mazimal reflection group which is a lift of G.

The fundamental group of )?/G is isomorphic to the quotient B/Z(B), where B denotes the complex
braid group attached to W.
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In Section |1}, we give preliminary results about complex (projective) reflection groups. In particular,
we prove that a projective complex reflection group admits a unique maximal lift in GL(V') which is a
reflection group. In Section [2| we prove Theorem [I| by introducing the enlarged braid group attached
to a complex reflection group W. This group is an extension of the more classical complex braid group
attached to W, and we give some of its properties. Lastly, in Section we give some corrections on a
result of Broué, Malle, Rouquier in [BMR98], which aims to relate braid groups of projective reflections
groups with complex braid groups. As pointed out in [DMM11], their result is false in general, and we
give a complete description of the cases for which it holds (see Proposition .

1. PRELIMINARIES

1.1. Reminders and generalities on complex reflection groups. In this section, we fix a finite
dimensional complex vector space V', and we fix n to be the dimension of V. We mostly follow [LT09]
for classical results on complex reflection groups.

Recall that a complex reflection group W is a finite subgroup of GL(V') which is generated by reflec-
tions, that is finite order linear automorphisms of V' which pointwise fix some hyperplane.

A complex reflection group W C GL(V) is irreducible if there are no W-invariant subspaces in V apart
from {0} and V itself. Every complex reflection group decomposes as a direct product of irreducible
complex reflection group and we will thus restrict our attention to irreducible groups from now on.
Irreducible complex reflection groups were classified by Shephard and Todd in [ST54], and we freely use
the notation of [LT09, Theorem 8.29] regarding this classification.

To an irreducible complex reflection group W C GL(V), one can attach the sequence d; < ... < d,, of
its degrees, and the sequence d}; > ... > dj = 0 of its codegrees [LT09, Proposition 3.25 and Definition
10.27]. The degrees of W are by definition the degrees of a system of basic invariants of W [LT09,
Theorem 3.20], that is, a family (f1,..., f,) of homogeneous elements of S(V*) which freely generate
S(V*)W. Such a sequence always exists by the Chevalley-Shephard-Todd Theorem |LT09, Theorem
3.20]. Moreover, a system of basic invariants (fi,..., f,) for W induces a homeomorphism V/W ~ C",
sending an orbit W.v to the n-tuple (fi(v),..., fn(v)) [LT09, Proposition 9.3].

To a complex reflection group W one can also attach the complement X in V of the union of the
reflecting hyperplanes attached to the reflections of W. The braid group B(= B(W)) of W is then
defined as the fundamental group of X/W, while the pure braid group P(= P(W)) of W is defined as
the fundamental group of X [BMR9S8, Section 2.B]. The projection map X — X/W is a covering map
by Steinberg’s Theorem |LT09, Theorem 9.44], and it induces a short exact sequence

1-P—-B—->W—>1.

Let W C GL(V) be a complex reflection group, and let ( € C*. An element g € W is said to be (-
regular if it admits a (-eigenvector which lies in X. In other words, g € W is (-regular if V' (g, ()N X # &,
where V' (g, () denotes the (-eigenspace of g. The eigenspace V (g, () is then called a regular eigenspace
for W. An integer k > 0 is said to be reqular for W if W contains some (j-regular element, where
(k= exp(3F).

If g € W is (-regular, then ¢* is ¢¥ regular for all integer k. In particular, if ¢ € C* has order m, then
W contains a (-regular element if and only if m is regular for W. We also have that regular eigenspaces
for W can all be written as V (g, (;,), where g is a (,-regular element for some integer m.

An important criterion for regularity is given in [LT09, Theorem 11.28], stating that a positive integer
k is regular for W if and only if it divides as much degrees of W as it does codegrees (both counted
with multiplicity).

1.2. Projective reflection groups. In this section, we fix a finite dimensional complex vector space
V of dimension n > 1.

We define a projective reflection group as a finite subgroup of PGL(V') which is generated by images of
reflections in PGL(V'). Imitating the case of linear reflection group, we say that a projective reflection
group G is irreducible if the only G-invariant subspace of P(V) is P(V) itself. We say that G is
imprimitive if there is a direct sum V =V, & --- @V}, with m > 2 such that the action of G on P(V)
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permutes the subspaces ‘//I, cee 1777\1 among themselves (we call {Vi,...,Vi,} a system of imprimitivity
for G).

If W c GL(V) is an irreducible complex reflection group, then the image W of W in PGL(V) is a
projective complex reflection group, which is imprimitive if and only if W itself is imprimitive. The
kernel the projection map W —» W is the set of scalar matrices lying in W. Sin/c\e W is irreducible,
this set coincides with the center Z(W) of W by Schur’s lemma, and we identify W with the quotient
group W/Z(W). An elementary result is that every projective reflection group is the image in PGL(V)
of some linear reflection group:

Lemma 1.1. Let G C PGL(V) be an irreducible projective reflection group. There is an irreducible
complex reflection group W C GL(V') such that W = G.

Proof. This result is shown in |[ST54, Section 1.3 and 1.4] in the case where G is primitive, so that we

can assume from now that G is imprimitive. Let us consider a system of imprimitivity {T/I, . ,‘//;} for
G. By following the proof of [LT09, Lemma 2.12], we obtain that all the V; have dimension 1. We can
then identify V with C" and G with a subgroup of PGL, (C) with the canonical basis as a system of
imprimitivity. Under this identification, we see that any lift of an element of G in GL,,(C) is a monomial
matrix. Consider the finite set PR C G, consisting of the elements of G which are images of reflections
in GL,,(C). For any r € PR, there is a finite number of reflections in GL,,(C) with image  in PGL,,(C).
Thus we can consider the finite set R C GL,(C) containing all the possible lifts of elements of PR which
are reflections. The elements of R are all monomial reflections, and thus the subgroup W of GL,(C)
generated by R is contained in some group G(m,1,n) for m big enough. In particular, W is a finite
reflection group in GL,,(C) with image G in PGL,(C). O

Remark 1.2. Let W C GLl((C) C* be a complex reflection group of rank 1. In this case W is a cyclic

group and the quotient W is the trivial group acting on P’(C) = {*}. This situation is not very rich
and Theorem [I] is immediate in this case. This is why we assume that dimV > 1 when considering
projective reflection groups.

In order to describe the action of W on the prOJectlve space P(V'), we first consider the inverse image

W of W in GL(V). We can describe the group W explicitly: Let Z denote the center of GL(V'), that
is the subgroup of scalar multiples of the identity. The groups W and Z normalize each other, and we
can consider the product group ZW (not to be confused with the center Z(W) of W). Since Z is also

the kernel of the natural morphism GL(V) — PGL(V'), we have ZW = W. This group contains both
Z and W as normal subgroups, and we have :

W/Z~W/(ZNW) =W,
W/W ~Z/(ZNW) >~ C*/uzmwy ~C*.
By Lemma we know that every projective reflection group is the image in PGL(V') of at least

one linear reflection group in GL(V). However, a given projective reflection group may have distinct
lifts W, W’. The groups W and W’ help us to relate W and W' in this case:

Lemma 1. 3 Let W W' C GL(V) be two irreducible complex reflection groups. We have W=w if
and only sz W/ and in this case, W and W' normalize each other. Moreover, if W C W', then
W =W’ is also equivalent to [W : Z(W)] = [W' : Z(W')].

Proof. The projection map GL(V) — PGL(V) induces a bijection between the subgroups of PGL(V)
and the subgroups of GL(V') which contain Z. Since W and W’ both contain Z, _they are equal if and

only if their images in PGL(V') are equal. Since the image of W) in PGL(V) is W ), we have the first

claim. Now, if W = W’, then W is normal in W = W, which contains W’. Thus W and W’ normalize
each other. o P .
Lastly, if W € W’ then W C W’ and W C W’. Since the cardinality of W is [W : Z(W)], we obtain

that [W : Z(W)] = [W': Z(W")] if and only if W = W". O
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Using this result, we are able to show that any projective reflection group admits a lift in GL(V)
which is a reflection group and which is maximal relative to inclusion. By Lemma/[l.1] this is equivalent
to the following proposition:

Proposition 1.4 (Full reflection group). Let W C GL(V) be an irreducible complex reflection group.

The family of complex reflection groups W' C GL(V') such that W = W' admits a mazimum Wy (for
inclusion). We call Wy the full reflection group associated to W.
(1) If W is a primitive group and dim(V') = 2, then Wy has type G7,G11,G1g depending on whether
W is a tetrahedral, octahedral or icosahedral group.
(2) If W is a primitive group and dim(V') > 2, then Wy = W, except when W has type Gas, in
which case Wy has type Gog.
(3) If W is an imprimitive group of type G(m,p,2), then Wy has type G(pz/’@,Q 2),
(4) If W is an imprimitive group of type G(m,p,n) with n > 2, then Wy has type G(m,p An,n).

Proof. The case where W is primitive is studied in [ST54, Section 1.3 and 1.4], where the authors classﬁy
all the possible lifts of W Assume now that W is imprimitive, and let W’ be such that W=W.In

this case, the group W is imprimitive, and W’ shares a system of imprimitivity with W. It is then
sufficient to consider the case where W = G(m p,n) and W' = G(m/,p',n’). The group G(m,p,n) has

order ;Mii and the index of its center is W
(3) First, W := G(m,p,2) is a reflection subgroup of W’ := G(pQ/TQ, 2,2). Moreover, the indices of the

centers are equal, and W=w by Lemma Now, let W" =G(m/,p,2) be such that W” =W. The

indices of the centers of W and of W” p2/\2 = 572

e If p and p’ have the same parity, then we deduce that m = m/ and W' = G(m,p', 2).
e If p is even and p’ is odd, then we deduce that m = 2m’ and W" = G('%,p’, 2).
e If p is odd and p/ is even, then we deduce that 2m = m' and W" = G(2m, p’, 2).

In each case, W is a reflection subgroup of W’ and we have the result.
(4) Assume now that n > 2. In this case, G(m,p,n) contains the reflection

0 (n O
M:=[¢r 0 0
0 0 I,

If W =G(m/,p',n') is such that W’ = W, there is some A € C* such that \M € W', By definition of
G(m/,p',n), this implies that A\, A\(;, € iy (note that X is a coefficient of AM only because n > 2). We
then have (,, € p,y and m divides m’. By exchanging W and W’, we obtain that m’ divides m and
m = m’. We then have

W ZW)| =W :ZW)] s pAn=p An,
and W’ ranges among the family of groups {G(m,p’,n) | P An =p An}. All the groups in this family
are included in Wy = G(m,p A n,n). O

Remark 1.5. Note that Proposition fails if n = 1. Indeed, if W is a complex reflection group of rank
1, then W is cyclic, and W = C* does not depend on W. This is another reason why we assume n > 1
when considering projective reflection groups.

We finish this section by proving that full reflection groups admit no regular hyperplanes. This result
will be used in Section 2.21

Lemma 1.6. Let W C GL(V) is a complex reflection group. If W = Wy is its own full reflection group,
then W admits no reqular hyperplanes in V.

Proof. If W has rank 2, then in each case in Proposition@, all regular elements of W are central, and
W} admits no proper regular eigenspace, in particular no regular hyperplanes.

Now, assume that W has rank n > 3. We denote by D the ged of all the degrees (that is, the order
of Z(W)) and by D; the gcd of all the degrees but the j-th one. If k is a regular number for W whose



BRAID GROUPS OF PROJECTIVE COMPLEX REFLECTION GROUPS 5

associated regular eigenspaces are hyperplanes, then k£ divides exactly n — 1 degrees of W. In other
words, k divides some D; while not dividing D, and D; does not divide D.

e If W is an exceptional group, then we can explicitly compute both D and the D;. We see that
D; = D for all j € [1,n], except in the case where W has type Gas, but W # Wy in this case.

e If W is a symmetric group &,,4; (acting on a space of dimension n) with n > 4, then the degrees
of Ware 2,3,...,n+ 1. Since n > 4, the prime numbers 2, 3,5 appear in the list of degrees of
W. We then have D; =1 = D for all j € [1,n].

o If W = Wy has type G(m,p,n) with n > 3, then p|n by Proposition In this case, the
degrees of W are m,2m, ..., (n—1)m, %, and D = mA (m7) = m. For j € [1,n], since n > 3,
we have

) p )
n
Dj|m or Dj| (m(n -1 mp) .

Since n — 1 and % are coprime, we have m(n — 1) A m% =m and D; = m for all j € [1,n], thus
Dj =m = D in each case.
O

2. MAIN RESULTS

In this section, we fix a finite dimensional complex vector space V of dimension n > 1. We also fix
an irreducible complex reflection group W C GL(V'). We otherwise keep the notation from Section

2.1. Actions of W, W and Z/Z(W). In order to prove Theorem l we need to study the action of W
on P(V). In this section, we relate this action with the action of W on V', and with the action of W /W
on V/W.

Since Z is a normal subgroup of /W/ there is an action of W/Z W on V/Z, Which we can restrict to
an action on (V'\ 0)/Z = P(V). This action coincides with the natural action of W on P(V). Similarly,
since W is a normal subgroup of W there is an action of W/W Z|Z(W) on V/W.

Note that the faithful action of W on P(V) can also be seen as an action of W on P(V') with kernel

Z(W). In particular, we will sometimes denote P(V)/W instead of P(V) //W to alleviate notation.
Similarly, we can see the action of Z/Z(W) on V/W as an action of Z ~ C*. We have the following
commutative square of topological spaces:

v\ o L5 (v oy

(2.1) | SN |

P(V) > (VAO)/W

This square (or rather its restriction to a convenient subspace of V') will prove useful to us in the next
section. Another relation between the actions of W, W and Z/Z(W) is the computation of nontrivial
stabilizers:

Lemma 2.1 (Stabilizers). Let x € V' be different from 0.

(a) The stabilizer of x € V under the action ofWN/ is given by
Stabg:(z) = {Cw € W |xze V(w,¢H}.

It is nontrivial if and only if © belongs to either a reflecting hyperplane of W or to a proper
reqular eigenspace of W.

(b) The stabilizer of [x] under the action of W is trivial if and only if Stabg; () is trivial.

(c) The stabilizer of W.x under the action of Z/Z(W) is trivial if and only if Stabg;(z) C W.
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Proof. (a) Let Cw € W. We have

(Cw)z=zcwzr=_lrereV(iw .
Now, assume that Stabw(x) is nontrivial and that x does not belong to a reflecting hyperplane of W.
By assumption, there is some w € W, and some ¢ € C* such that x € V(w, () and that w # ( (otherwise
¢~'w is trivial). Since = does not belong to any reflecting hyperplane of W, z € V(w, () implies that
w is (-regular. Then, w # ¢ implies that w is noncentral, and thus V(w,() € V is a proper regular
eigenspace.

Conversely, assume that x belongs to the reflecting hyperplane associated to a reflection r € W. By
definition, we have x € V/(r,1), and thus r € Stabg;(x). Lastly, assume that g is a (-regular element

such that z € V(g,¢) € V. We have g # ( since V(¢Id,¢) =V, and thus 1 # ("1g € Stabg; (), which
is nontrivial. -
(b) Let wZ(W) € W. By definition, we have wZ(W).[z] = [w.x] and thus
wZ(W) € Stabw([x]) & 2] = [w.z]
S3IeC |wr =
<3 eC | (Cuw)ax==x
& Jw( € wZ N Staby; ().

In particular, we obtain that Stabg;([z]) is trivial if and only if Z is the only Z-coset in W which
intersects Stabg; () nontrivially. This is equivalent to Staby;(z) C Z. However, since z is nonzero,
Z N Stabg () is il/ways equal to {1}, and Stabg;(z) C Z is equivalent to Stabg;(z) = {1}.
(c) Let \W € W/W. By definition, we have AZ(W).W.x = W.(A.x) and thus
AW € Staby 7wy (W.x) & W.(\z) = W
SIJweW |wx=z
& Jwd € AW N Stabg; ().

In particular, we obtain that Stab /) (W.z) is trivial if and only if W is the only W-coset in W which
intersects Stabgs; () nontrivially. This is equivalent to Stabg:(z) C W. O

2.2. Enlarged complex braid groups. Now that we understand the stabilizers under the action of
W on P(V), we are ready to introduce the enlarged (pure) braid group of a complex reflection group.

Definition 2.2 (Strongly regular vectors). The set of strongly regular vectors attached to W is
defined as
Xs(= Xs(W)) :={z € V | Stabg(z) = 1}.

By Lemma[2.1] X is the complement in V' of the union of both the reflecting hyperplanes of W and
of its proper regular eigenspaces. We can now define the enlarged (pure) braid group as the fundamental
group of Xg/W (of Xg). We fix a basepoint xp in Xg for the remainder of this section.

Definition 2.3 (Enlarged braid group). The enlarged braid group attached to W is defined as
Bs(= Bg(W)) = m1(Xg/W,W.zg) and the enlarged pure braid group attached to W is defined as
Ps(: Ps(W)) = 7T1(Xs,.1‘0).

The inclusion map Xg/W < X/W (resp Xg < X) induces a morphism Bg — B (resp. P — Pg).
The following result gives some general information on these two morphisms:

Proposition 2.4.
(a) The morphism Bg — B (resp. Ps — P) induced by the inclusion Xg/W — X/W (resp.
X5 — X ) is surjective. Moreover, if W = Wy, then it is an isomorphism.
(b) In general, the group Bg is the inverse image of W under the natural projection B(Wy) — Wr.
It is a normal subgroup of index Wy : W] of B(Wy). In particular, Bg is torsion free.
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Proof. (a) Among the proper regular eigenspaces of W, we distinguish between the regular hyperplanes
and the regular eigenspaces of complex codimension > 2. Let Xg be the space obtained from X by
removing the regular hyperplanes of W. We have Xg C Xg C X.

The space Xg/W (resp. Xg) is obtained from X/W (resp. from X) by removing an algebraic
hypersurface. Since X/W and X are themselves complements of algebraic hypersurface in an affine
space, [BMRI8|, Proposition Al] gives that the inclusion Xg/W — X/W (resp. Xg — X) induces a
surjective morphism between the associated fundamental groups. Then, the space Xg/W (resp. Xg) is
obtained from the smooth complex manifold X¢/W (resp. Xg) by removing a subvariety of complex
codimension > 2. By [God71, Theorem X.2.3], the inclusion Xg/W — Xg/W (resp. Xg — Xg)
induces an isomorphism between the associated fundamental groups.

Now, if W = Wy, then W admits no regular hyperplanes by Lemma In this case, we have
X% = X and the second part of the above argument gives the isomorphism Bg ~ B.

(b) Consider Wy the full reflection group attached to W. Since Xg(W) depends only on W, and
since W = Wy, we have Xg = Xg(W) = Xg(Wy). Since W has finite index in Wy, the covering map
Xs — Xg/Wy factors through the covering map Xg — Xg/W into a covering map Xg/W — Xg/W;
and Bg is a finite-index subgroup of Bg(W). Moreover, by Lemma W; is a normal subgroup of
W, and the covering map Xg/W — Xg/Wy is the quotient by the action of W/W on Xg/W. This
covering map induces a short exact sequence

1 —= Bs — Bs(Wy) = W/W; — 1
which gives the desired result. O

Now, restricting the commutative square (2.1)) to Xg yields a commutative square:

XS E— Xs/W

l !
Xg —— Xg/W
in which all the maps are fibrations:
e The fiber bundle V' — P(V) restricts to a fiber bundle Xg — )/(\5 We obtain a short exact
sequence .
1— 7['1([1/‘0] \O,.’Eo) — PS — 7'('1(X5, [CCQ]) — 1.
In other words, the natural morphism Ps — 71 ()/(\S, [0]) is surjective and its kernel is generated
by the (homotopy class in Xg) of the loop ¢ — exp(2int)xo, which we denote by 7g.
e The covering map X — X/W restricts to a covering map Xg — Xg/W. We obtain a short
exact sequence
1—-Ps— Bg—>W —1.
e The action of W on 5(;‘ is free by Leir\nma Since W is finite, it acts properly on )/(\5, which

is locally compact. The projection Xg — Xg/W is then a covering map, and we have a short
exact sequence

1= m(Xg, [zo]) = m(Xg/W, W.[zg]) = W — 1.

e The action of C* ~ Z/Z(W) on Xg/W is free by Lemma It is then a free and proper Lie
group action of C* on Xg/W, which is a smooth manifold (as an open subset of V/W ~ C").
By [Leel3, Theorem 21.10], the quotient map p : Xg/W — (Xg/W)/C* ~ Xg/W is a principal
C*-bundle and we have a short exact sequence

1 — m(p~ (Wozo), Weag) — Bs — m1(Xs/W, W.[xo]) — 1.

In other words, the natural morphism Bg — m ()/(Tg /W, W.[zo]) is surjective and its kernel is
generated by the (homotopy class in Xg/W) of the loop t — exp(2int).(W.zg). By construction
of the action of C* ~ Z/Z(W) on V/W (see Section [2.1)), this last loop is actually the loop

2imt

t— W. (e\Z(W)l xo). We denote its homotopy class by Sg.
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By construction, 5gZ(W)| is the image in Bg of mg, and the image of Sg in W is elZQ(ZiVT’)\ Id, which
generates Z(W). These elements allow us to describe the center of enlarged braid groups:

The center of complex braid groups was studied in [BMR9S], [Bes15] and [DMMI11]. In the space X,
the path ¢t — exp(|22(i§}f)|)x induces a well defined element 3 € Z(B). The element S4W)l = 1 ¢ P is
represented by the path ¢ — exp(2int)z. The main results of [DMM11] state that Z(B) (resp. Z(P))
is cyclic and generated by (8 (resp. by m) when W is irreducible. Moreover, if U C B is a finite index
subgroup, then Z(U) C Z(B). Using their results, along with Theorem we are able to describe the

center of enlarged braid groups.

Corollary 2.5 (Center of enlarged braid groups). The center of Bg is infinite cyclic and generated
by Bs. If U C Bg is a finite index subgroup, then Z(U) C Z(Bg). In particular, the center of Pg is
infinite cyclic and generated by 7g.

Proof. First, if W = Wy has no regular hyperplane, then the natural morphism Bg — B (resp Ps — P)
is an isomorphism by Proposition Since this morphism sends g to § (resp. mg to ), the result is
precisely [DMM11, Theorem 1.2 and Theorem 1.4].

In the general case, we consider Wy the full reflection group attached to W. We have Xg = Xg(W) =
Xs(Wy). By Proposition[2.4] Bg is a finite index subgroup of B(Wy). This shows directly that if U C Bg
has finite index, then Z(U) C Z(Bg).

From the first part of the proof, we know that the center of Bg(W/) is infinite cyclic and generated
by Bs(Wy) and that the center of Bg is infinite cyclic and generated by the smallest power of Bs(Wy)
which belongs to it.

For a positive integer k, 5S(Wf)k is the homotopy class of the image in Xg/Wy of the path in Xg
given by

2ikmt
2Pl .

2ikm
We have ,BS(Wf)k € Bg if and only if the endpoint e ?™"7)l of 4 lies in W.zo. Now, since zg € Xg(W),
having Az € W.z for some A\ € C* is possible only if AId € Z(W), in other words if A is a power of
T2 Thus, the endpoint of 7y lies in W.xg if and only if & is a multiple of [Z(W}) : Z(W)]. The
center of Bg is then generated by the homotopy class of the image in Xg/W of the path

2imt

NzWy):Zz(W)] * t— elZMWM g,

Ve it—e

which is precisely Bg(W).
Lastly, Z(Ps) is generated by the smallest power of Sg(W) which lies in Pg. In other words, Z(Ps) is
generated by the homotopy class in Xg of the path Z(W):Z(W))» where k is the smallest integer such

2imk

that the endpoint of Ve[Z(Wy):Z(W)] 1S To. Since the endpoint of VklZ(Wy):z(w)) 1s elZtl, the smallest
such integer is k = |Z(W)|, and Z(Ps) is generated by the homotopy class in Xg of the path NzW;)s
which is mg by definition. (I

This corollary was the last argument needed, along with our commutative square of fibrations, to
show the following result:

Theorem 2.6. Let V be a finite dimensional complex vector space, and let W C GL(V') be an irreducible
complex reflection group. Let also xg € Xg be a basepoint. We have a commutative diagram, where all
short sequences are exact:

(ms) > (Bs) »

» Z(W)
:. FR
| | l

—~

m1(Xs, [z0]) > m1(Xs/W, W.[xo]) ——» W
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In particular, the fundamental group of )/(tq/W (resp. of )/(Tg) is isomorphic to Bg/Z(Bg) (resp. to
Ps/Z(Fs)).

This theorem allows us to complete the proof of Theorem [T}

Theorem 2.7 (Computation of projective braid groups). Let V' be a finite dimensional complex
vector space, and let G C PGL(V') be a nontrivial irreducible projective reflection group. Let also W C
GL(V) be the mazimal reflection group such that W = G, and let X = {[z] € P(V) | Stabg([z]) = 1}.
The fundamental group of X’/G is isomorphic to B/Z(B).

Proof. By construction, we have that W = Wy is its own full group. By Proposition n the morphism
Bs(W) — B(W) induced by the inclusion Xg /W — X/W is an isomorphism. Now, by Lemma
we have X = XS, thus X /G = XS/ W and the fundamental group of this space is 1somorph1(: to
Bs/(Bs) ~ B/{B) = B/Z(B) by Theorem [2.6 O

Theorem [2.6] only exists at the level of enlarged braid groups, and cannot be extended to braid groups
in every case (see Section [2.3]for more details). However, it can be extended in the case where all regular
elements of W are central.

Corollary 2.8. If all reqular elements of W are central, then we have a commutative diagram, where
all short sequences are exact:

(m) « {

|

P <

!

m(X, [zo]) —— m(X/W, W.[xo]) ——» W

~

— W

r
1

In particular, the fundamental group of X /W (resp. of X ) is isomorphic to B/Z(B) (resp. to P/Z(P)).

Proof. The only statement which is not directly implied by Theorem is the fact that (8) = Z(B)
(resp. (m) = Z(P)) , which is known for all irreducible complex braid groups |[DMM11, Theorem 1.1
and Theorem 1.2]. O

2.3. Correction of a result of Broué, Malle, Rouquier. The natural commutative square

X — X/W

Induces a commutative diagram of groups

(m)

|

(2.2) P

!

(X, [z]) — m(X/W,W.[2])

—w—3

'
1

The second row of this diagram is a short exact sequence (see Section . The first row is a short
exact sequence by [DMM11, Theorem 1.3]. The first column is a short exact sequence, induced by the
C*-bundle X — X (restriction of the C*-bundle V \ 0 — P(V)). The third column is a short exact
sequence by construction.
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Contrary to the projection map Xg/W — )@/W studied in Section the projection map X/W —
X / 1% may not be a fibration. In particular, we cannot use the same argument as in the proof of
Theorem to obtain that the second column of Diagram is a short exact sequence. However, we
still have the following partial result:

Proposition 2.9. The morphism B — m()?/W, W[m]) induced by the projection map X/W — )?/W
is surjective. Furthermore, if b € B admits a nontrivial power in Z(B), then the image of b in
T (X /W, W.[z]) is trivial.

Proof. Let f = (f1,..., fn) be a system of basic invariants for W. Under the homeomorphism V/W ~
C"™ induced by f, the action of Z ~ C* is given by

C(@1,y -y mp) = (Mg, ..., Cray),
where dy,...,d, are the degrees of W (since f; is homogeneous of degree 7). The quotient space
(V\O/W)/(Z/Z(W)) ~ (V \ 0)/W is then isomorphic to the weighted projective space P(dl, ceeydp).
In particular, it is an irreducible normal algebraic variety [Dol82, Proposition 1.3.3], and X/ W is an
irreducible normal algebraic variety, since it is an algebraic open subset of P(dy, ..., d,).
Now, consider the open set Xg C X studied in Section For x € Xg, we have a commutative
diagram

Bg B

(2.3) | l
m(Xg/W, W.Jz]) —— m(X /W, W.[2])

We are going to show that all the morphisms in this diagram are surjective. Let us recall that, if Y is
an irreducible complex normal algebraic variety, and if U C Y is a nonempty (algebraic) open subset of
Y, then the natural morphism from the fundamental group of U to that of Y is surjective (see [ADH]16,
Theorem 2.1] and the references there).

e By Propos1t10n 2.4 the morphism Bs — B is surJectlve
e Since X/ Wis a normal variety, and since XS/W is an analytic open subset of X /W the
morphism 771(X5/W w. [z ]) — 771(X/W w. [z]) is surjective.
e The morphism Bg — 771(X5/W, W[ |) was proven to be surjective in Theorem
Since three out of four arrows in Diagram are surjective, then so is the fourth one, which is what
we wanted to show.

Lastly, let d be a regular number for W, let g € W be a d-regular element, and let = € V(g,{y) N X.
Fixing z as a basepoint, we can consider the path 7 : [0,1] — X sending ¢ to exp(%rt)a:. The endpoint
of v is {yxr = g.x € W.x. Thus v induces a well defined element g of B which is a lift of g under the
projection map B — W. By construction, g belongs to the kernel of the morphism B — m ()?/W, W, [x])
since the image of the path ~ remains in W.z at all times.

Now, the element ¢ is a d-th root of the full-twist 7. Moreover, by [Gar23, Theorem 1.2 and Proposi-
tion 8.1], an element b € B admits a central power if and only if it is conjugate to a power of an element
of the form g (for some regular element g € W). Thus, any element of B admitting a central power
belongs to the kernel of the morphism B — m; ()/(\'//V[?, W[x]) O

Note that the above result applies to 3, which admits itself as a central power in B. In particular,
the composition of the second column of Diagram is trivial, even if the sequence is not exact.

Now, it is claimed in [BMR9S8, Proposition 2.23| that Diagram can always be completed by a
morphism 1 (X /W, W[az]) — W into a commutative diagram in which every row and every column is
a short exact sequence. It is pointed out in [DMM11] that this result is false in general. We give in a
complete description of the cases in which it holds:

Proposition 2.10. The following statements are equivalent:
(i) All regular elements in W are central.
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(ii) The second column in Diagram is a short exact sequence.
(11i) There is a morphism w1 ()?/W7 W[:p]) — W which completes Diagram into a commutative
diagram.
Moreover, if these statements hold, then all the rows and columns in the completed diagram are short
exact sequences.

Proof. Let K C B denote the kernel of the natural morphism B — Wl()/f / I//I\/,/W[x]) By Proposition
the group m ()A( / W,W[a}]) is isomorphic to the quotient B/K. Point (7i7) is then equivalent to
stating that the kernel of the morphism B — W contains K. The kernel of the morphism B — W is
the preimage of Z (W) under the morphism B — W: it is the subgroup of B generated by P and f3.

(¢) = (4i) is proven in Corollary

(#9) = (i79): If the second column of Diagram is a short exact sequence, then K = () C (P, /),
which proves (ii7).

(791) = (i): we prove the contrapositive. Assume that W admits a noncentral regular element g.
By |Gar23, Theorem 1.2], there is some root of 7 in B which is a lift of g under the projection map
B — W. By Proposition p belongs to the kernel of the projection map B — m ()?/W,W[:c])
However, since g is not central in W, the image of p in W is not trivial. The kernel K of the morphism
B — m(X/W, W[wo]) is then not included in (P, 3) and (ii7) is false. Lastly, we saw in Corollary
that, if all regular elements in W are central, then we can complete Diagram into a commutative
diagram in which all rows and all columns are short exact sequences. ]

Remark 2.11. In the general case, Propositiononly gives that we have a surjective morphism B/K —
m(X/ W, W[x}), where K is the subgroup of B generated by the elements in B which admit a central
power. We do not know whether this morphism is an isomorphism in the general case. However,
preliminary computations seem to imply that in most cases, B/K is either trivial, or a cyclic group,
which would in turn imply that 7, (X /W, W.[z]) is either trivial or cyclic, at least in a number of cases.
We chose not to include those rather long computations here, as they only give partial results.
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