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Abstract. We consider a particular class of Garside groups, which we call circular
groups. We mainly prove that roots are unique up to conjugacy in circular groups. This
allows us to completely classify these groups up to isomorphism. As a consequence, we
obtain the uniqueness of roots up to conjugacy in complex braid groups of rank 2.

We also consider a generalization of circular groups, called hosohedral-type groups.
These groups are defined using circular groups, and a procedure called the ∆-product,
which we study in generality. We also study the uniqueness of roots up to conjugacy in
hosohedral-type groups.
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Introduction

The aim of this article is to study two particular classes of Garside monoids, called
circular and hosohedral-type monoids, along with their associated Garside groups. Circular
monoids were first defined in the original article of Dehornoy and Paris where the authors
introduce the notion of Garside group. Hosohedral-type monoids first appeared in the work
of Matthieu Picantin ([Pic00]) and later on in that of Mireille Soergel ([Soe23]) because of
the particular properties of their lattices of simples.

Let m, ℓ be two positive integers. The circular monoid M(m, ℓ) is defined by a monoid
presentation, given by a set of m ordered generators, endowed with relations stating that
any product of ℓ consecutive generators should be equal (Definition 2.1). The circular
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group G(m, ℓ) is then defined as the enveloping group of M(m, ℓ). Circular monoids are
Garside monoids, with Garside element the product of ℓ consecutive generators.

Our main motivation is to study roots in circular groups using their Garside structure,
in particular, the associated solution to the conjugacy problem. We reduce the situation
to the study of two classes of elements, namely rigid and periodic elements (Proposition
2.7).

Generally speaking, let (M,∆) be a Garside monoid, and let p, q be integers. An element
ρ in the associated Garside group G(M) is said to be (p, q)-periodic if ρp = ∆q. We give a
complete description of periodic elements in circular groups, up to conjugacy.

Proposition. (Proposition 2.13 and Corollary 2.11) Let m, ℓ be two positive integers. An
element x ∈ G(m, ℓ) is periodic if and only if it is conjugate to a power of a product of
either m or ℓ consecutive generators. In particular, for a given p and q, all (p, q)-periodic
elements are conjugate. Moreover, an element x ∈ G(m, ℓ) is periodic if and only if it has
a central power.

As a consequence, an isomorphism between two circular groups must preserve periodic
elements. From this we deduce the classification of circular groups up to isomorphism.

Corollary. (Corollary 2.21) Let m, ℓ,m′, ℓ′ be four positive integers. The groups G(m, ℓ)
and G(m′, ℓ′) are isomorphic if and only if one of the following holds

- 1 ∈ {m, ℓ} and 1 ∈ {m′, ℓ′}. In this case, G(m, ℓ) ≃ G(m′, ℓ′) ≃ Z.
- (m′, ℓ′) ∈ {(m, ℓ), (ℓ,m)}.

Since periodic elements are (by definition) roots of powers of ∆, the above proposition
is a first result of uniqueness of roots up to conjugacy in circular groups. By also studying
the conjugacy of rigid elements, we obtain the following stronger result.

Theorem. (Theorem 2.16) Let m, ℓ be positive integers. If α, β ∈ G(m, ℓ) are such that
αn = βn for some nonzero integer n, then α and β are conjugate in G(m, ℓ).

We then apply this result to complex braid groups of rank 2. Recall that, ifW ⊂ GLn(C)
is a finite group generated by (pseudo-)reflections, then one can consider the braid group
B(W ), defined as the fundamental group of the regular orbit space associated to W (see
[BMR98, Section 2.B]). These groups generalize Artin groups of spherical type.

The question of uniqueness of roots up to conjugacy in braid groups was first studied
by Juan González-Meneses in [Gon03] , where he proved that roots were unique up to
conjugacy in the Artin groups of type A (i.e. the usual braid groups). His results were
later expanded in [LL10] to the Artin groups of type B. To our knowledge, no other results
are known regarding this question. The uniqueness of roots up to conjugacy is conjectured
to hold at least for every spherical Artin group (cf. [DDGKM, Conjecture X.3.10]).

The above theorem on uniqueness of roots up to conjugacy in circular groups, along
with the fact that every complex braid group of rank 2 is isomorphic to a circular group
(see [Ban76, Theorem 1 and Theorem 2]), gives the uniqueness of roots up to conjugacy in
complex braid groups of rank 2.

Theorem. (Theorem 2.23) Let W be an irreducible complex reflection group of rank 2,
and let B(W ) be its braid group. If α, β ∈ B(W ) are such that αn = βn for some nonzero
integer n, then α and β are conjugate in B(W ).

This theorem gives preliminary evidences that the uniqueness of roots up to conjugacy
may actually hold in all complex braid groups.

In the last section, we study a generalization of circular monoids, called hosohedral-type
monoids. These monoid appear as a particular case of a general construction involving
Garside monoids, called the ∆-product.

Let (M1,∆1), . . . , (Mh,∆h) be a family of Garside monoids. We define the ∆-product of
(M1,∆1) ∗∆ · · · ∗∆ (Mh,∆h) as the quotient of the free product of the Mi by the relations
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stating that all the ∆i are equal to each other. This monoid is again a Garside monoid
(with Garside element the image of any ∆i), in which each one of the Mi embeds.

Proposition. (Proposition 3.9) Let (M1,∆1), . . . , (Mh,∆h) be homogeneous Garside monoids.
Each Garside group G(Mi) naturally embeds in the Garside group G(M1 ∗∆ · · · ∗∆ Mh).
These embeddings respect left-weighted factorizations.

From this proposition, we deduce that the center of a ∆-product of Garside monoids
(with more than one factor) is cyclic and generated by a power of the Garside element
(Proposition 3.12). We also deduce that, for integers p, q, the ∆-product M1 ∗∆ · · · ∗∆ Mh

admits (p, q)-periodic elements if and only if one of the factors does (Proposition 3.11).
Note that two periodic elements coming from two different factors G(Mi) and G(Mj)

may not be conjugate in the ∆-product (Example 3.19).
We then apply these results to hosohedral-type monoids, which are defined as the ∆-

product of circular groups. In this case, there can be distinct conjugacy classes of (p, q)-
periodic elements (see Example 3.19). We show that these are actually the only obstructions
to the uniqueness of roots up to conjugacy.

Theorem. (Theorem 3.21) Let M be a hosohedral-type monoid. If α, β ∈ G(M) are such
that αn = βn for some nonzero integer n, then we either have

• α and β are conjugate.
• α and β are nonconjugate periodic elements of G(M).

Acknowledgments. This work is part of my PhD thesis, done under the supervision of
Pr. Ivan Marin. I thank him for his precious advice, especially in Sections 2.3.1 and 2.3.2.
I would also like to thank Mireille Soergel and Igor Haladjian for stimulating discussions.

1. Preliminaries on Garside monoids

Throughout this article, the gcd (resp. lcm) of two integers p and q will be denoted by
p ∧ q (resp. p ∨ q).

Our main arguments rely on the study of super-summit sets and periodic elements. For
this we need some reminders on Garside monoids. Our main reference is [DDGKM, Section
I.2 and Chapter VIII].

1.1. Definitions, normal form. We start by considering a monoid M . Throughout this
paper, we will always assume that M is homogeneous. That is, there is some monoid
morphism ℓ : M → (Z⩾0,+) such that elements of positive length generate M . This
condition is far from minimal when considering Garside monoids, but it is sufficient here as
both circular monoids and hosohedral-type monoids are homogeneous. The homogeneity
condition implies in particular that the set of invertible elements of M is trivial. We also
assume that M is cancellative . That is, every equality of the form abc = ab′c in M
implies b = b′. Under these assumptions, we define two partial orders ⪯ and ⪰ on M by

a ⪯ b ⇔ ∃c ∈ M | ac = b and b ⪰ a ⇔ ∃c ∈ M | b = ca.

These partial order are called left-divisibility and right-divisibility , respectively. A
nontrivial element a ∈ M is an atom if it admits no nontrivial (right- or left-)divisors
other than itself. We say that an element ∆ ∈ M is balanced if its sets of left- and
right-divisors are equal, we then simply call this set the divisors of ∆.

Definition 1.1. [DDGKM, Definition I.2.1]
Let M be a homogeneous cancellative monoid, such that the posets (M,⪯) and (M,⪰) are
both lattices. A Garside element in M is a balanced element ∆ whose set of divisors S
is finite and generates M . We call S the set of simple elements (associated to ∆) and
we say that (M,∆) is a homogeneous Garside monoid .
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The assumption that (M,⪯) and (M,⪰) are both lattices means that (left- and right-)
lcms and gcds of two elements always exist. We denote by a ∧ b (resp. a ∨ b) the left-gcd
(resp. right-lcm) of two elements a, b. If need be, we will denote by ∧R the right-gcd and
by ∨L the left-lcm.

Let (M,∆) be a homogeneous Garside monoid, and let s ∈ S be a simple element. By
cancellativity, there is a unique simple s such that ss = ∆. We call s the left-complement
of s in ∆. Likewise, the right-complement s∗ of s in ∆ is defined by s∗s = ∆.

Defining ϕ(s) := s for any simple element s yields an automorphism of M , which per-
mutes the simple elements (in particular, it has finite order). We call ϕ the Garside
automorphism of (M,∆). By definition, we have s∆ = ∆ϕ(s) for any simple element s.

One of the main features of a Garside monoid is that it gives rise to a convenient solution
to the word problem, given by the notion of greedy word.

Definition 1.2. [DDGKM, Corollary V.1.54]
Let (M,∆) be a homogeneous Garside monoid. A word st of length 2 in S is called greedy
if s = (st) ∧∆, or equivalently if s and t are left-coprime. In general, a word s1 · · · sr in S
is called greedy if each subword sisi+1 is greedy for i ∈ [[1, r − 1]].

Lemma 1.3. Let s, t be two simple elements in a homogeneous Garside monoid (M,∆),
and let u := t ∧ s. The greedy normal form of the product st is given by s′t′ where

s′ = su ∈ S and t′ = u−1t ∈ S.

Proof. This is an application of the invariance of left-gcd under multiplication, as we have
su = s(t ∧ s) = (st) ∧ (ss) = x ∧∆. □

An immediate induction on this lemma shows that any element in a homogeneous Gar-
side monoid M admits a unique decomposition as a greedy word in the simple elements.
The lemma also gives a practical way to compute the greedy decomposition of any element
x of M , by the means of successively computing greedy decompositions of pairs of elements
of S (see for instance [DDGKM, Algorithm III.1.52]).

The definition of a homogeneous Garside monoid implies the Ore condition, thus a
homogeneous Garside monoid M always embeds in its enveloping group G(M), which can
be conveniently described as a group of fractions. The greedy decomposition in M carries
on into a complete description of the elements of G(M).

Proposition 1.4. [DDGKM, Proposition I.2.4]
Let (M,∆) be a homogeneous Garside monoid. Every element x ∈ G(M) admits a unique
decomposition of the form x = ∆kb with k ∈ Z, b ∈ M and ∆ ̸⪯ b.

In particular, this proposition gives a solution to the word problem in G(M), given by
computing the above decomposition, and then the greedy decomposition of b in M . This
decomposition of an element x ∈ G(M) is the left-weighted factorization of x.

1.2. Conjugacy and periodic elements. In this section, we fix (M,∆) a homogeneous
Garside monoid, and G(M) its enveloping group. The Garside monoid M provides a
solution to the conjugacy problem in G(M), given by the computation of super-summit
sets. These super-summit sets also allow for the computation of centralizers in G(M).

Let x ∈ G(M) with left-weighted factorization x = ∆ks1 · · · sr. The infimum (resp.
the supremum) of x is defined by inf(x) := k (resp. sup(x) = k + r).

Definition 1.5. [DDGKM, Defintion VIII.2.12]
Let x ∈ G(M). The conjugacy class of x in G(M) admits a well-defined subset SSS(x), on
which each one of inf and sup takes a constant value. Furthermore, for every conjugate x′

of x in G(M), we have

inf(x) ⩽ inf(SSS(x)) and sup(x′) ⩾ sup(SSS(x)).

The set SSS(x) is called the super-summit set of x.
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Since the set S is finite, there is a finite number of elements of G(M) with given inf and
sup. In particular, the super-summit set of any element of G(M) is always finite. As the
super-summit set of an element depends only on its conjugacy class, computing this set
gives a solution to the conjugacy problem. To compute super-summit sets, one uses the
cycling and decycling operations.

Let x ∈ G(M) with left-weighted factorization x = ∆ks1 · · · sr. The initial factor
(resp. final factor) of x is defined as init(x) := ϕ−k(s1) (resp. fin(x) := sr). The cycling
(resp. decycling) of x is then defined as

cyc(x) = xinit(x) = xϕ
−k(s1) (resp. dec(x) = xfin(x)

−1
= xs

−1
r ).

Proposition 1.6. [DDGKM, Proposition VII.2.16]
Let x ∈ G(M). One can go from x to an element of SSS(x) by a finite sequence of cycling,
followed by a finite sequence of decycling.

This proposition can be used to compute an element of SSS(x) starting from x ∈ G(M).
The whole super-summit set of x ∈ G(M) can then be encoded in a so-called conjugacy
graph.

Definition 1.7. [FG03, Section 3]
Let x ∈ G(M), the conjugacy graph CG(x) of x is an oriented graph, defined as follows.

• The object set of CG(x) is SSS(x).
• An arrow a → b in CG(x) is given by a simple element s ∈ M such that as = b and that
no left-divisor t of s is such that at ∈ CG(x).

By [DDGKM, Lemma VIII.2.19], the conjugacy graph of any element x is connected. In
other words, two elements of SSS(x) are always conjugate by a sequence of simple elements
(and their inverses) such that the result at each step remains in SSS(x).

Let x ∈ G(M). By definition of the conjugacy graph, a non-oriented path from x to
itself in CG(x) induces a word in the simple elements (and their inverses) representing an
element of the centralizer CG(M)(x). By [FG03, Theorem 3.4], the centralizer CG(M)(x) of
x is generated by the images in G(M) of any generating set of paths from x to itself in
CG(x).

In our study of circular and hosohedral-type monoids, we are going to consider two
classes of elements showing two extreme behavior with respect to the cycling and decycling
operations.

Definition 1.8. [BGG07, Definition 3.1]
An element x ∈ G(M), with left-weighted factorization x = ∆ks1 · · · sr, is said to be rigid
if r = 0 or if the word fin(x) init(x) is greedy.

If x = ∆ks1 · · · sr ∈ G(M) is rigid (with r > 0), the left-weighted factorizations of cyc(x)
and dec(x) are given by

cyc(x) = ∆ks2 · · · srϕ−k(s1) and dec(x) = ∆kϕk(sr)s1 · · · sr−1.

In particular, inf(cyc(x)) = inf(x) = inf(dec(x)) and sup(cyc(x)) = sup(x) = sup(dec(x)).
As both cyc(x) and dec(x) are also rigid, we obtain that a rigid element always belongs to
its super-summit set by Proposition 1.6.

Rigid elements also exhibit a strict behavior with respect to powers. This behavior is
useful in relating the super-summit set of a rigid element to that of its powers.

Lemma 1.9. Let (M,∆) be a Garside monoid, and let α, β ∈ G(M) be rigid elements. For
any positive integer n, we have cyc(α)n = cyc(αn), dec(α)n = dec(αn) and ϕ(αn) = ϕ(α)n.
Moreover, if αn = βn for some positive integer n, then α = β.

Proof. The result is trivial if n = 1, we assume that n ⩾ 2 from now on. Let α = ∆ks1 · · · sr
be the left-weighted factorization of α. Since α is rigid, the left-weighted factorization of
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x := αn is
αn = ∆nkϕ(n−1)k(s1 · · · sr) · · ·ϕk(s1 · · · sr)s1 · · · sr.

We note that the initial factor (resp. the final factor) of αn is the same as that of α,
hence the result on cyc(αn) and dec(αn). The result on ϕ(αn) is an obvious consequence
of ϕ(x) = x∆ for x ∈ G(M).

Moreover, we have inf(αn) = n inf(α) and sup(αn) = n sup(α). The left-weighted fac-

torization of α can be recovered using that of αn by taking ∆
inf(αn)

n , followed by the last
sup(αn)

n terms of the left-weighted factorization of αn. Since this depends only on the left-
weighted factorization of αn, we obtain that αn = βn implies α = β if β is another rigid
element. □

The other class of elements we will be interested in is that of periodic elements.

Definition 1.10. [DDGKM, Definition V.3.2]
Let (M,∆) be a homogeneous Garside monoid, and let p, q be two integers. An element
ρ ∈ G(M) is said to be (p, q)-periodic if ρp = ∆q.

By definition, any root and any power of a periodic element in G(M) is again a periodic
element. Moreover, it is obvious by definition that a (p, q)-periodic element is also (np, nq)-
periodic for any integer n ⩾ 1. One can show that the converse is also true:

Proposition 1.11. [DDGKM, Proposition VIII.3.31 and Proposition VIII.3.34]
Let p, q be two integers. Let d := p ∧ q, with p = dp′ and q = dq′. If p′ = 1, then any
(p, q)-periodic element in G(M) is conjugate to ∆q′. If p′ ̸= 1, then any (p, q)-periodic
element in G(M) is conjugate to a (p′, q′)-periodic element of the form ∆ks, where s ∈ S.

In particular, this proposition shows that the super-summit set of a periodic element
contains only elements of the form ∆ks or ∆k (as such elements clearly lie in their own
super-summit set).

The definition of rigid element is a priori not group-theoretic and depends on the Garside
monoid M . On the contrary, periodic elements can sometimes be characterized by a solely
group-theoretic property. If (M,∆) is a homogeneous Garside monoid such that the center
of G(M) is cyclic and generated by a power of ∆, then an element ρ ∈ G(M) is periodic if
and only if it admits a central power. In this case, we can try and compare two groups by
comparing their respective periodic elements.

Definition 1.12. Let (M,∆) be a homogeneous Garside monoid. We say that a periodic
element ρ ∈ G(M) is irreducible if it admits no roots in G(M) other than itself.

Since (M,∆) is assumed to be homogeneous here, we obtain that any periodic element
in G(M) is always a power of some irreducible periodic elements. Let (M,∆), (M ′,∆′) be
two homogeneous Garside monoids, such that the center of G(M) (resp. of G(M ′)) is cyclic
and generated by some power of ∆ (resp. ∆′). An isomorphism G(M) → G(M ′) sends a
generator of Z(G(M)) to a generator of Z(G(M ′)). Therefore, it must map (irreducible)
periodic elements of G(M) to (irreducible) periodic elements of G(M ′).

2. Circular monoids

In this section we define circular monoids by their (monoid) presentations. These
monoids already appeared in [DP99, Example 5], where the authors showed that they
were Garside monoids. Here we propose an in-depth study of their Garside properties.

2.1. Definition, first properties. Let m, ℓ be two positive integers that we fix through-
out this section. Let also {a0, . . . , am−1} be an alphabet. For i ∈ Z and p ∈ Z⩾1, we define
s(i, p) as the word

s(i, p) :=

p∏
k=i′

ak = ai′ai′+1 · · · ai′+p−1
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where i′ is the remainder in the Euclidean division of i by m, and with the convention that,
for j ⩾ 1, aj := aj′ where j′ is the remainder in the Euclidean division of j by m. We also
define s(i, 0) to be the empty word for all i ∈ Z.

Definition 2.1. Let m, ℓ be two positive integers. The circular monoid M(m, ℓ) is
defined by the monoid presentation

M(m, ℓ) := ⟨a0, . . . , am−1 | ∀i[[0,m− 1]], s(i, ℓ) = s(i+ 1, ℓ)⟩+ .

The enveloping group G(m, ℓ) of M(m, ℓ) is called a circular group.

From now on, we assimilate the word s(i, p) (i ∈ Z, p ⩾ 0) with its image in M(m, ℓ).

Example 2.2. The monoid M(3, 3) is given by ⟨a, b, c | abc = bca = cab⟩+. The group
G(3, 3) is the fundamental group of the complement of 3 lines going through the origin in
C2 (cf. [DP99, Example 5]). The monoid M(2, 3) is given by ⟨s, t | sts = tst⟩+. It is the
Artin monoid of type A2.

We note that the presentation of M(m, ℓ) is homogeneous. That is, the defining relations
are equalities between words of the same length. The function sending an element of
M(m, ℓ) to the length of any word representing it is then a length function, makingM(m, ℓ)
into a homogeneous monoid. As the only defining relations of M(m, ℓ) are between words
of length ℓ, two words of length less than ℓ cannot represent the same element of M(m, ℓ).
In particular, for 0 < p < ℓ and i, i′ ∈ Z, we have s(i, p) = s(i′, p) in M(m, ℓ) if and only if
i ≡ i′[m].

Lemma 2.3. [DP99, Example 5]
The monoid M(m, ℓ) is a homogeneous Garside monoid with Garside element ∆ = s(0, ℓ).
Its simple elements are the s(i, p) for i ∈ [[0,m− 1]] and p ∈ [[0, ℓ]]. The Garside automor-
phism of M(m, ℓ) is given by ϕ(s(i, p)) = s(i+ ℓ, p).

The only statement which is not showed in [DP99, Example 5] is the statement on the
Garside automorphism, which comes from the fact that, for any simple element s(i, p) of
M(m, ℓ), we have

s(i, p)∆ = s(i, p)s(i+ p, ℓ) = s(i, ℓ+ p) = s(i, ℓ)s(i+ ℓ, p) = ∆s(i+ ℓ, p).

Let s(i, p) be a simple element of M(m, ℓ). We have s(i, p)s(i+ p, ℓ− p) = s(i, ℓ) = ∆,
thus the right-complement (resp. left-complement) of s(i, p) in ∆ is given by

s(i, p)∗ = s(i+ p− ℓ, ℓ− p) (resp. s(i, p) = s(i+ p, ℓ− p)).

The fact that any simple element different from 1 and ∆ admits a unique decomposition
as a product of atoms has the following consequences.

Lemma 2.4. (Left-gcd of two simple elements)
Let s(i, p) and s(i′, p′) be two simple elements of M(m, ℓ).

(a) We have s(i, p) ⪯ s(i′, p′) if and only if i = i′ and p ⩽ p′, or if p = 0, or if p′ = ℓ.
(b) The left-gcd of s(i, p) and s(i′, p′) is given by

s(i, p) ∧ s(i′, p′) =


s(i, p) if s(i, p) ⪯ s(i′, p′)

s(i′, p′) if s(i′, p′) ⪯ s(i, p)

1 otherwise

(c) The right-lcm of s(i, p) and s(i′, p′) is given by

s(i, p) ∨ s(i′, p′) =


s(i′, p′) if s(i, p) ⪯ s(i′, p′)

s(i, p) if s(i′, p′) ⪯ s(i, p)

∆ otherwise
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Proof. (a) The cases p = 0 and p′ = ℓ are immediate: they give s(i, p) = 1 and s(i′, p′) = ∆,
respectively. If i = i′ and p ⩽ p′, we have s(i, p)s(i+p, p′−p) = s(i′, p′) and s(i, p) ⪯ s(i′, p′).
Conversely, suppose that s(i, p) ⪯ s(i′, p′). Since we assume that p′ < ℓ and 0 < p, there is
only one way to write both s(i, p) and s(i′, p′) as a product of atoms. Thus the assumption
that s(i, p) can be written as a prefix of some word expressing s(i′, p′) implies that s(i, p)
is in fact the only prefix of length p of s(i′, p′). We obtain that p ⩽ p′ and s(i′, p) = s(i, p),
which gives i = i′.
(b) The first two cases are obvious. Suppose that we have s(i, p) ̸⪯ s(i′, p′) and s(i′, p′) ̸⪯
s(i, p). By the first point we have p, p′ /∈ {0, ℓ} and i ̸= i′. Again by point (a), a nontrivial
common left-divisor s(j, q) of s(i, p) and s(i′, p′) should be such that j = i = i′, which is
impossible. We apply similar reasoning to prove point (c). □

This very strict behavior of gcds and lcms allows for an easy description of greedy normal
forms of a product of two simple elements in M(m, ℓ).

Lemma 2.5. (Greedy normal form of a product of two nontrivial simples)
Let s(i, p) and s(i′, p′) be two simple elements of M(m, ℓ) with 0 < p, p′ < ℓ. The greedy
normal form of s(i, p)s(i′, p′) is given by

s(i, p)s(i′, p′) =


s(i, p)s(i′, p′) if i+ p ̸≡ i′[m],

s(i, p+ p′) if i+ p ≡ i′[m] and p+ p′ < ℓ,

∆ if i+ p ≡ i′[m] and p+ p′ = ℓ,

∆s(i+ ℓ, p+ p′ − ℓ) if i+ p ≡ i′[m] and p+ p′ > ℓ.

Proof. We will apply Lemma 1.3. Since 0 < p, p′ < ℓ, Lemma 2.4 gives

s(i, p) ∧ s(i′, p′) = s(i+ p, ℓ− p) ∧ s(i′, p′),

=


s(i+ p, ℓ− p) if i+ p ≡ i′[m] and ℓ− p ⩽ p,

s(i′, p′) if i+ p ≡ i′[m] and p′ ⩽ ℓ− p

1 otherwise.

These three cases give the desired result. □

This particular description of greedy normal forms in circular monoids will induce a
convenient description of super-summit sets in Section 2.2.

We finish this section by the study of the particular case where m = ℓ. In this case, the
group G(m,m) is the fundamental group of the complement of m lines through the origin
in C2 (cf. [DP99, Example 5]). Its presentation can be reinterpreted as a direct product.

Lemma 2.6. Let m be a positive integer, and let Fm−1 be a free group with m−1 generators.
The group G(m,m) is isomorphic to Z×Fm−1. This isomorphism identifies ∆ with (z, 1),
where z is a generator of Z.

Proof. The result is obvious if m ∈ {1, 2}. We denote by x0, · · · , xm−2 the generators of
Fm−1, and by z a generator of Z. We define f : Z× Fm−1 → G(m,m) by{

f(z) = ∆ = s(0,m),

f(xi) = ai ∀i ∈ [[0,m− 2]].

This induces a well-defined morphism since ∆ ∈ Z(G(m,m)). Conversely, we define g :
G(m,m) → Z× Fm−1 by{

g(ai) = xi ∀i ∈ [[1,m− 2]],

g(am−1) = (x0 · · ·xm−2)
−1z.
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This induces a well-defined morphism since, for all i ∈ [[0,m− 1]], we have

g(s(i,m)) = g(s(i,m− 1− i)am−1s(0, i))

= xi · · ·xm−2(x0 · · ·xm−2)
−1zx0 · · ·xi−1

= xi · · ·xm−2(x0 · · ·xm−2)
−1x0 · · ·xi−1z = z = g(s(0,m)).

It is straightforward to check that f and g are inverses of one another. □

2.2. Conjugacy in circular groups. Again we fix two positive integers m, ℓ. In this
section, we study separately the conjugacy of periodic and non-periodic elements in circular
groups. Our first result shows that one can reduce to the case of periodic or rigid elements.

Proposition 2.7. Let x be an element of G(m, ℓ). If x lies in its own super-summit set,
then it is either rigid or periodic.

Proof. First, if inf(x) = sup(x), then we have x = ∆k for some k ∈ Z. In this case, x is
obviously both rigid and (1, k)-periodic.

Suppose now that sup(x) = inf(x) + 1. We have x = ∆ks(i, p) for some i ∈ [[0,m − 1]]
and p ∈ [[1, ℓ − 1]]. The element x is rigid if and only if the word s(i, p)ϕ−k(s(i, p)) =
s(i, p)s(i − kℓ, p) is greedy. By Lemma 2.5, this is equivalent to i + p ≡ i − kℓ[m], i.e.
kℓ + p ≡ 0[m]. If kℓ + p ≡ 0[m], then there is some integer v with −kℓ + mv = p. In
particular we have ℓ ∧m|p. We have

xn = ∆knϕk(n−1)(s(i, p)) · · ·ϕk(s(i, p))s(i, p)

= ∆kns(i+ k(n− 1)ℓ, p) · · · s(i+ kℓ, p)s(i, p)

= ∆kns(i+ k(n− 1)ℓ, np)

= ∆kn+as(i+ (k(n− 1) + a)ℓ, r),

where np = aℓ+ r is the Euclidean division of np by ℓ. The remainder r is 0 if and only if
n is a multiple of ℓ∨p

p = ℓ
ℓ∧p . We obtain that x is (a, b)-periodic, for

a =
ℓ

ℓ ∧ p
and b = k

ℓ ∨ p

p
+

ℓ ∨ p

ℓ
=

kℓ+ p

ℓ ∧ p
=

mv

ℓ ∧ p
.

Furthermore, a and b are coprime.
Lastly, suppose that sup(x) > inf(x) + 1. The left-weighted factorization of x is given

by ∆ks1 · · · sr with r > 1. We claim that x is rigid. Otherwise, the word srϕ
−k(s1) is not

greedy. By Lemma 2.5, we either have that srϕ
−k(s1) is a simple element, or a product of

the form ∆s where s is a simple element different from 1 and ∆. In the first case, we have
sup(cyc(x)) < sup(x). In the second case, we have inf(cyc(x)) > inf(x). In both cases, we
have x /∈ SSS(x). □

2.2.1. Periodic elements. The proof of Proposition 2.7 also gives the following result.

Lemma 2.8. Let m, ℓ be positive integers, and let ∆ks(i, p) be in G(m, ℓ) with 0 < p < ℓ.
The element ∆ks(i, p) is periodic if and only if p + kℓ ≡ 0[m], in which case it is a
( ℓ
p∧ℓ ,

mv
p∧ℓ)-periodic element (where p+ kℓ = mv).

Now that we have a characterization of the elements of the super-summit sets of periodic
elements, we can compute conjugacy graphs and centralizers. We distinguish two cases.

Lemma 2.9. Let x = ∆k for some nonzero integer k. We have SSS(∆k) = {∆k}. The
centralizer of ∆k in G(m, ℓ) is either G(m, ℓ) if kℓ is a multiple of m, or cyclic and generated
by ∆ otherwise.

Proof. We have that y ∈ G(m, ℓ) lies in SSS(∆k) only if inf(y) = k = sup(y). The only
element satisfying this is ∆k, which is conjugate to itself. Thus we have SSS(∆k) = {∆k}.
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Now, let s(j, q) be a simple element in M(m, ℓ). Since both 1 and ∆ conjugate ∆k to itself,
we can assume that q ∈ [[1,m− 1]]. We have

s(j, q)−1∆ks(j, q) = s(j, q)∆k−1s(j, q)

= s(j + q, ℓ− q)∆k−1s(j, q)

= ∆k−1s(j + q + (k − 1)ℓ, ℓ− q)s(j, q).

In order for this element to lie in SSS(∆k), the word s(j + q + (k − 1)ℓ, ℓ− q)s(j, q) must
not be greedy. This is equivalent to j + kℓ ≡ j[m]. If kℓ is a multiple of m, this is true for
all j ∈ [[0,m − 1]], and we obtain s(j, q)−1∆ks(j, q) = ∆k: the arrows from ∆k to itself in
CG(∆k) are given by all the simple elements. Otherwise, j + kℓ ≡ j[m] is never true for
j ∈ [[1,m− 1]] and the only arrows from ∆k to itself in CG(∆k) are given by 1 and ∆. □

Lemma 2.10. Let x = ∆ks(i, p) be a periodic element in M(m, ℓ) with p ∈ [[1,m − 1]].
We have SSS(x) = {∆ks(n, p) | n ∈ [[0,m− 1]]}. The centralizer of ∆ks(0, p) in G(m, ℓ) is
cyclic and generated by s(p,m).

Proof. The assumption that x is periodic is equivalent to kℓ+p ≡ 0[m] by Lemma 2.8. Let
s(j, q) be a simple element in M(m, ℓ). We have

xs(j,q) = s(j, q)−1∆ks(i, p)s(j, q)

= ∆k−1s(j + q + (k − 1)ℓ, ℓ− q)s(i, p)s(j, q).

Again, in order for this to lie in SSS(x), we must have either j+ kℓ ≡ i[m] or i+ p ≡ j[m].
Since kℓ+ p ≡ 0[m], those two assertions are equivalent. If they are satisfied, then we have

xs(j,q) = ∆ks(j + q − p, p) = ∆ks(i+ q, p).

In particular, s(p, n) gives a conjugating element from ∆ks(0, p) to ∆ks(n, p) for n ∈
[[0,m−1]]. Moreover, for ∆ks(n, p) ∈ SSS(x), the simples s such that (∆ks(n, p))s ∈ SSS(x)
are all divisible by s(n+ p, 1). The conjugacy graph of x is then given by

∆ks(0, p)
s(p,1) // ∆ks(1, p)

s(p+1,1) // · · ·
s(p+m−2,1)// ∆ks(m− 1, p)

s(p+m−1,1)

jj
,

and the centralizer of ∆ks(0, p) is cyclic and generated by

s(p, 1)s(p+ 1, 1) · · · s(p+m− 1, 1) = s(p,m).

□

We can use these two lemmas to determine the center of circular groups. Recall that the
Garside automorphism ϕ, corresponding to conjugacy by ∆ on the right, sends a simple
element s(i, p) to s(i + ℓ, p). If m ̸= 1 ̸= ℓ, then the smallest trivial power of ϕ is ϕ

m
m∧ℓ ,

and ∆
m

m∧ℓ is the smallest central power of ∆ in G(m, ℓ).

Corollary 2.11. (Center of circular groups)
Let m, ℓ be two positive integers. If m = 1 or ℓ = 1, then G(m, ℓ) ≃ Z is abelian. If
m = ℓ = 2, then G(m, ℓ) = Z2 is abelian. Otherwise Z(G(m, ℓ)) is infinite cyclic and

generated by ∆
m

m∧ℓ .

Proof. If m = 1, then M(1, ℓ) = ⟨a0⟩+ ≃ Z⩾0 (with Garside element aℓ0). If ℓ = 1, we
have M(m, 1) = ⟨a0⟩+ ≃ Z⩾0 (with Garside element a0). If m = ℓ = 2, then G(m, ℓ) =
⟨a0, a1 | a0a1 = a1a0⟩ = Z2 (with Garside element a0a1).

If m > 1, we distinguish several cases. First, we assume that m does not divide ℓ. By
Lemma 2.9, the centralizer of ∆ in G(m, ℓ) is cyclic and generated by ∆. As the center
Z(G(m, ℓ)) is included in CG(m,ℓ)(∆), we obtain that Z(G(m, ℓ)) is cyclic and generated

by the smallest central power of ∆, which is ∆
m

m∧ℓ since ℓ ̸= 1.
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Now, if m = ℓ, then Lemma 2.6 gives an isomorphism G(m, ℓ) ≃ Z × Fm−1. The cases
m = ℓ ∈ {1, 2} have already been studied. If m ⩾ 3, then the center of Z×Fm−1 is Z×{1},
which is identified with ⟨∆⟩ = ⟨∆

m
m∧ℓ ⟩.

Lastly, we assume that mk = ℓ for some integer k > 1. The element s(0,m) is (k, 1)-
periodic in G(m, ℓ) and, by Lemma 2.10, the centralizer of s(0,m) in G(m, ℓ) is cyclic and

generated by s(0,m). Since mk = ℓ, we have that s(0,m)k = ∆ = ∆
m

m∧ℓ is a central
element. It remains to show that s(0,m) admits no central power inferior to k. Let
1 ⩽ r ⩽ k − 1. We have s(0,m)r = s(0,mr) and

s(0, 1)s(0,m)r = s(0, 1)s(0,mr)

= ∆−1s(mr − ℓ, ℓ−mr)s(0, 1)s(0,mr)

= ∆−1s(0,m(k − r))s(0, 1)s(0,mr)

As m ̸= 1, this is a left-weighted factorization, in particular it is not equal to s(0, 1). We
then obtain that the smallest central power of s(0,m) is s(0,m)k = ∆, thus Z(G(m, ℓ)) =
⟨∆⟩ as claimed. □

Proposition 2.12. Let m, ℓ be positive integers, and let p, q be integers. Any two (p, q)-
periodic elements in G(m, ℓ) are conjugate.

Proof. First, by Proposition 1.11, we can assume that p, q are coprime integers. If p = 1,
then x and y are both conjugate to ∆q. If p > 1, we can assume (up to conjugacy) that

x, y are of the form ∆ks(i, a) and ∆k′s(i′, a′) with 0 < a, a′ < ℓ, respectively. By Lemma
2.8, there are two integers v, v′ with mv = kℓ + a and mv′ = k′ℓ + a′. Since kℓ+ a (resp.
k′ℓ + a′) is the length of x (resp. y) in G(m, ℓ), we have v = v′. By reducing modulo ℓ,
we obtain a ≡ a′[ℓ]. Since we assume that a, a′ ∈ [[0, ℓ − 1]], a ≡ a′[ℓ] implies a = a′. The
equality kℓ + a = k′ℓ + a′ then gives k = k′. By Lemma 2.10, we get that x and y are
conjugate. □

Proposition 2.13. Let m, ℓ be positive integers. Any periodic element in G(m, ℓ) is con-
jugate to a power of either s(0,m) or ∆. Moreover the irreducible periodic elements of
G(m, ℓ) are given (up to conjugacy) by

{s(0,m)±1} if m|ℓ,
{∆±1} if ℓ|m,

{s(0,m)±1,∆±1} otherwise.

Proof. Let ρ ∈ G(m, ℓ) be a periodic element. By Lemma 2.10, we can assume up to
conjugacy that ρ = ∆ks(kℓ, p). If p = 0, then ρ = ∆k is a power of ∆. If p ̸= 0,
then Lemma 2.8 gives an integer v with mv = kℓ + p, we then have ρ = s(0,m)v. If ρ
is an irreducible periodic element of G(m, ℓ), then we have ρ ∈ {s(0,m)±1,∆±1} (up to
conjugacy). It only remains to check whether or not s(0,m) and ∆ are indeed irreducible.

If m|ℓ (resp. ℓ|m), then we have s(0,m)
ℓ
m = ∆ (resp. ∆

m
ℓ = s(0,m)). Since there must be

at least one conjugacy class of irreducible periodic elements in G(m, ℓ), we get the desired
result if m|ℓ or ℓ|m.

Assume now that neither m|ℓ nor ℓ|m. A proper root of s(0,m) in G(m, ℓ) must have
the form s(0, n) with 0 < n < m. By Lemma 2.8, such an element cannot be periodic,
thus it cannot be a root of s(0,m), which is then irreducible. The same reasoning applies
to ∆. □

2.2.2. Non-periodic elements. We now turn our attention to non-periodic elements. By
Proposition 2.7, such elements are exactly the conjugate of rigid elements in G(m, ℓ).

Proposition 2.14. Let x ∈ G(m, ℓ) be a non-periodic element. The super-summit set of
x is made of rigid elements. Furthermore, the only arrows starting from an object y of
CG(x) are labeled by init(y) and fin(y).
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Proof. Let y ∈ SSS(x). Since x is not periodic, y is not periodic. It is then rigid by
Proposition 2.7. We then have sup(y) > inf(y) and we can assume that the left-weighted
factorization of y is ∆ks(i1, p1) · · · s(ir, pr) with r > 0. Since y is rigid, we have ir + pr ̸≡
i1 − kℓ[m] by Lemma 2.5. Let s(j, q) be a simple element with q ∈ [[1,m− 1]]. We have

ys(j,q) = ∆k−1s(j + q + (k − 1)ℓ, ℓ− q)s(i1, p1) · · · s(ir, pr)s(j, q).
In order for this to lie in SSS(x), we must have either j + kℓ ≡ i1[m] or ir + pr ≡ j[m].
Since ir + pr + kl ̸≡ i1[m], these cases are mutually exclusive.

- Assume that j + kℓ ≡ i1[m]. By Lemma 2.5, the left-weighted factorization of ys(j,q) is
given by 

∆k−1s(j + q + (k − 1)ℓ, ℓ− q + p1) · · · s(ir, pr)s(j, q) if p1 < q,

∆ks(i2, p2) · · · s(ir, pr)s(j, q) if p1 = q,

∆ks(j + q + kℓ, p1 − q)s(i2, p2) · · · s(ir, pr)s(j, q) if p1 > q.

Thus, ys(j,q) ∈ SSS(x) in this case if and only if p1 = q. We then have that s(j, q) =
s(i1 − kℓ, p) is the initial factor of y.

- Assume that ir + pr ≡ j[m]. By Lemma 2.5, the left-weighted factorization of of ys(j,q)

is given by
∆k−1s(j + q + kℓ− ℓ, ℓ− q)s(i1, p1) · · · s(ir, pr + q) if pr + q < ℓ,

∆kϕ(s(j + q + kℓ− ℓ, ℓ− q)s(i1, p1) · · · s(ir−1, pr−1)) if pr + q = ℓ,

∆kϕ(s(j + q + kℓ− ℓ, ℓ− q)s(i1, p1) · · · s(ir−1, pr−1))s(ir + ℓ, pr + q − ℓ) if pr + q > ℓ.

Thus, ys(j,q) ∈ SSS(x) in this case if and only if pr + q = ℓ. We then have that s(j, q) =

s(ir + pr, ℓ− pr) = s(ir, pr).

□

Let x ∈ G(m, ℓ) be a rigid element. The conjugation of x by fin(x) is equal to ϕ(dec(x)).
The last proposition then gives

Corollary 2.15. Let x ∈ G(m, ℓ) be a non-periodic element. One can go from any element
of SSS(x) to any other by a finite sequence of cycling, decycling and application of the
Garside automorphism.

We can now state our main result on uniqueness of roots up to conjugacy.

Theorem 2.16. (Uniqueness of roots up to conjugacy in circular groups)
Let m, ℓ be two positive integers. If α, β ∈ G(m, ℓ) are such that αn = βn for some nonzero
integer n, then α and β are conjugate.

Proof. First, if α is (p, q)-periodic for some integers p and q. We have that αn is (p, nq)-
periodic and that β is also (np, nq)-periodic. The elements α and β are then conjugate by
Proposition 1.11 and Proposition 2.12.

Up to replacing α and β with α−1 and β−1, we can assume that n > 0. Assume now that
α is not periodic, we also have that x := αn and β are non periodic. Up to conjugacy, we
can assume that α ∈ SSS(α). By Proposition 2.7, we have that α is rigid. The element x is
then rigid as a power of the rigid element α. Let now c ∈ G(m, ℓ) be so that βc ∈ SSS(β).
Since β is not periodic, βc is rigid as well as xc = (βc)n. We have x, xc ∈ SSS(x). By
Corollary 2.15, there is a finite sequence of cycling, decycling, and application of the Garside
automorphism sending x to xc. By Lemma 1.9, applying the same transformations to α
gives a rigid element α′ whose n-th power is xc. Again by Lemma 1.9, we have α′ = βc

and thus α and β are conjugate. □

2.3. Some group theoretic properties.
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2.3.1. Homology of circular groups. The homology of a Garside group can be studied us-
ing a particular complex introduced by Dehornoy and Lafont in [DL03, Section 4]. This
complex is built using atoms and lcms in the underlying Garside monoid. The particular
behavior of circular monoids with regards to lcms induces strong results on the associated
complex.

Let us start by quickly recalling the definition of the Dehornoy-Lafont complex. We
start by considering a homogeneous Garside monoid (M,∆), with set of simples S and set
of atoms A. We fix an arbitrary strict linear ordering < on A. For any x ∈ M , we define
md(x) to be the <-minimal element of A which right-divides x.

An n-cell is defined as an n-tuple [α1, . . . , αn] of atoms of M such that α1 < . . . < αn,
and αi = md(αi ∨L αi+1 ∨L · · · ∨L αn) for all i ∈ [[1, n]]. We denote by Xn the set of n-cells.
The set Cn of n-chains is then defined as the free ZG(M)-module with basis the set of
n-cells. Endowed with a convenient differential ∂n (which we will not define here), the
complex (Cn, ∂n)n∈N is an exact resolution of the trivial ZG(M)-module Z. Since both S
and A are finite, we have Xn = ∅ for n ⩾ |A|, thus (Cn, ∂n)n⩾0 is bounded above and
below.

Lemma 2.17. Let m, ℓ be two positive integers, and let M := M(m, ℓ). We have X0 =
{[∅]}, X1 = {[a0], . . . , [am−1]}, X2 = {[a0, ai] | i ∈ [[1,m− 1]]} and Xn = ∅ for n ⩾ 3.

Proof. The statements on X0 and X1 are straightforward. By definition, an n-tuple [α1, . . . , αn]
is an n-cell if and only if [α2, . . . , αn] is an n− 1-cell and α1 = md(α2 ∨L · · · ∨L αn).

If n = 2, then we get that a couple [ai, aj ] is a 2-cell if and only if ai = md(ai ∨L aj).
Since ai ̸= aj by assumption, we have md(ai ∨L aj) = md(∆) = a0. Thus we get the
result on X2. Lastly, if [α1, · · · , αn] is an n-cell for n ⩾ 2, then [αn−1, αn] is a 2-cell. Thus
αn−1 = a0, and αn−2 < a0 is impossible if n > 2. We obtain that Xn = ∅ if n ⩾ 3. □

Let M = M(m, ℓ) be a circular monoid. We know that H0(G(m, ℓ),Z) = Z and that
H1(G(m, ℓ),Z) is the abelianization G(m, ℓ)ab of G(m, ℓ). Since Cn = {0} for n ⩾ 3, we
have Hn(G(m, ℓ),Z) = {0} for n ⩾ 3. Furthermore, the group H2(G(m, ℓ),Z) is the kernel
of the map ∂2 : C2 ⊗Z → C1 ⊗Z. In particular, it is a free abelian group. Since the Euler
characteristic of the complex (Cn, ∂n) is 0, we get that H2(G(m, ℓ),Z) ≃ Zr−1 where r is
the rank of the free part of H1(G(m, ℓ),Z). Thus the integral homology of G(m, ℓ) can be
computed by only computing G(m, ℓ)ab.

Lemma 2.18. Let m, ℓ be positive integers. We have G(m, ℓ)ab ≃ Zm∧ℓ. The integral
homology of G(m, ℓ) is then given by

Hn(G(m, ℓ),Z) =


Z if n = 0

Zm∧ℓ if n = 1

Zm∧ℓ−1 if n = 2

0 if n ⩾ 3

Proof. Let a0, . . . , am−1 denote the atoms of M(m, ℓ). In G(m, ℓ)ab, we have ai+ℓ =
s(i, ℓ)−1ais(i, ℓ) = ai for all i ∈ [[0,m − 1]]. Conversely, in the group Zm quotiented by
the relations ai = ai+ℓ for all i ∈ [[0,m− 1]], we have

s(i+ 1, ℓ) = s(i+ 1, ℓ− 1)ai+ℓ = s(i+ 1, ℓ− 1)ai = ais(i+ 1, ℓ− 1) = s(i, ℓ)

for all i ∈ [[0,m− 1]]. Thus we have

G(m, ℓ)ab =

〈
a0, . . . , am−1

∣∣∣∣∣
{
ai = ai+ℓ ∀i ∈ [[0,m− 1]]

aiaj = ajai ∀i, j ∈ [[0,m− 1]]

〉
.

This group is free abelian, with rank the cardinality of (Z/mZ)/(ℓZ/mZ) = Z/(m∧ℓ)Z. □

In particular, for m = 2, we recover the result of [Sal94, Table 1] on the homology of
spherical Artin groups of rank 2.
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2.3.2. Remarkable isomorphisms. In this section we give the classification of circular groups
up to group isomorphism. First, Corollary 2.11 gives that, for any positive integers m, ℓ,
the group G(m, ℓ) is abelian if and only if m = 1 or ℓ = 1 or m = ℓ = 2, in which case
G(m, ℓ) ≃ Z, G(m, ℓ) ≃ Z and G(m, ℓ) ≃ Z2, respectively.

Proposition 2.19. Let m, ℓ,m′, ℓ′ be four positive integers. If the groups G(m, ℓ) and
G(m′, ℓ′) are isomorphic and nonabelian, then (m′, ℓ′) ∈ {(m, ℓ), (ℓ,m)}.

Proof. Let d := m ∧ ℓ and d′ := m′ ∧ ℓ′. If G(m, ℓ) and G(m′, ℓ′) are isomorphic, then
Lemma 2.18 gives that

Zd ≃ H1(G(m, ℓ),Z) ≃ H1(G(m′, ℓ′),Z) ≃ Zd′ .

In particular we have d′ = d.
Since G(m, ℓ) and G(m′, ℓ′) are nonabelian, both the centers of G(m, ℓ) and G(m′, ℓ′)

are cyclic and generated by some power of ∆. An isomorphism f : G(m, ℓ) → G(m′, ℓ′)
then induces a bijection between irreducible periodic elements of G(m, ℓ) and of G(m′, ℓ′).
By Proposition 2.13, we have

- If m|ℓ, then we either have m′|ℓ′, in which case we have ℓ
m = ℓ′

m′ , d = m = m′ = d′ and

ℓ = ℓ′, or ℓ′|m′, in which case we have ℓ
m = m′

ℓ′ , d = m = ℓ′ = d′ and ℓ = m′.
- If ℓ|m, the same reasoning gives (m, ℓ) = (m′, ℓ′) or (m, ℓ) = (ℓ′,m′).
- Lastly, if neither m|ℓ nor ℓ|m, then we have neither m′|ℓ′ nor ℓ′|m′. We then have either

ℓ

d
=

ℓ′

d′
and

m

d
=

m′

d′
or

ℓ

d
=

m′

d′
and

m

d
=

ℓ′

d′
.

Since d′ = d, we obtain (m′, ℓ′) ∈ {(m, ℓ), (ℓ,m)}.
□

This proposition strongly restricts the possible isomorphisms between circular groups.
We can then show that all the remaining possible isomorphisms actually occur:

Proposition 2.20. Let m, ℓ be two positive integers. There is an isomorphism of groups
between G(m, ℓ) and G(ℓ,m), which sends atoms of M(m, ℓ) to conjugates of atoms in
M(ℓ,m).

Proof. The result is immediate if m = ℓ. Up to exchanging m and ℓ, we can assume that
m < ℓ. Let ℓ = mp+ r be the Euclidean division of ℓ by m.

We denote by {a0, . . . , am−1} the atoms of M(m, ℓ) and by {b0, . . . , bℓ−1} the atoms of
M(ℓ,m). We also consider Fm to be the free group generated by {a0, . . . , am−1}. Ex-
ceptionally, we denote the simple elements of M(ℓ,m) by t(i, p) instead of s(i, p) to avoid
confusions with the simple elements of M(m, ℓ). We also denote by s̃(i, p) the product
ai · · · ai+p in Fm.

Let f̃ : Fm → G(ℓ,m) be the morphism defined by{
f(a0) := bm−1,

f(ai) := (bm−i−1)
f(s̃(0,i)) ∀i ∈ [[1,m− 1]].

By an immediate induction, we get that f̃(s̃(0, k)) = t(m − k, k) for all k ∈ [[0,m − 1]].

We show that f̃ induces a well defined group morphism f : G(m, ℓ) → G(ℓ,m). Let
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i ∈ [[1,m− 1]], we have

f̃(s̃(i, ℓ)) = f̃(s̃(0, i)−1s̃(0, ℓ+ i))

= f̃(s̃(0, i)−1)f̃(s̃(0, ℓ))f̃(s̃(0, r + i))

= t(m− i, i)−1f̃(s̃(0,m)q))t(m− r − i, r + i)

= t(m− i, i)−1t(0,m)qt(m− r − i, r + i)

= t(0,m)qt(m− i+ qm, i)−1t(m− r − i, r + i)

= t(0,m)qt(m− i− r, i)−1t(m− r − i, r + i)

= t(0,m)qt(0, r) = f̃(s̃(0, ℓ)).

We show that f is an isomorphism by constructing its inverse. First, by definition of f , we
have

∀i ∈ [[0,m− 1]], bm−i−1 = f(s(0,i)ai)

and we define g(bj) = a
s(0,m−j−1)−1

m−j−1 for j ∈ [[0,m − 1]]. We also have ∆ = t(0,m) =

f(s(0,m)) and we define g(t(0,m)) = s(0,m). Let j ∈ [[0, ℓ− 1]] and let j = mp+ j′ be the
Euclidean division of j by m. We have bj = ϕp(bj′) = ∆−pbj′∆

p and we define

g(bj) = g(∆pbj′∆
p) := s(0,m)−pg(bj′)s(0,m)p = a

s(m−j′−1,j′+1)s(0,m)p−1

m−j′−1

To show that g does define a group morphism G(ℓ,m) → G(m, ℓ), we have to show that
g(t(i,m)) does not depend on i. We have g(t(0,m)) = s(0,m) by definition. Then, let
i ∈ [[1, ℓ − 1]] be such that g(t(i − 1,m)) = s(0,m). Let i − 1 = mp + k be the Euclidean
division of i− 1 by m. We have

g(t(i,m)) = g(b−1
i−1)g(t(i− 1,m))g(bi+m−1) = s(0,m)

= a
−1 s(m−k−1,k+1)s(0,m)p−1

m−k−1 s(0,m)a
s(m−k−1,k+1)s(0,m)p

m−k−1

= s(0,m).

We obtain that g(t(i,m)) = g(t(0,m)) = s(0,m) by induction. It is an immediate check to
see that f and g are inverse to each other. □

If we combine Proposition 2.19 and Proposition 2.20, we get a complete classification of
circular groups up to group isomorphism.

Corollary 2.21. Let m, ℓ,m′, ℓ′ be four positive integers. The groups G(m, ℓ) and G(m′, ℓ′)
are isomorphic if and only if one of the following holds

- 1 ∈ {m, ℓ} and 1 ∈ {m′, ℓ′}. In this case, G(m, ℓ) ≃ G(m′, ℓ′) ≃ Z.
- (m′, ℓ′) ∈ {(m, ℓ), (ℓ,m)}.
Example 2.22. If m = 2, then M(2, ℓ) is the Artin monoid for the Artin group of type
I2(ℓ), while M(ℓ, 2) is the dual braid monoid for the same Artin group. The isomorphism
G(2, ℓ) → G(ℓ, 2) constructed in the above proof is already known: it sends a0 to b1 and

a1 to bb10 = b−1
1 ∆ = b2.

2.4. Application to complex braid groups of rank 2. We refer the reader to [LT09]
for general results on complex reflection groups. They are finite subgroups of GLn(C)
generated by complex (pseudo)-reflections.

The braid group associated to a complex reflection group W is defined as π1(X/W ),
where X is the complement inside Cn of the hyperplane arrangement defined by the reflec-
tions of W . The classification of irreducible complex reflection groups was done in [ST54].
It separates irreducible complex reflection groups into a general series G(de, e, n) depending
on integer parameters d, e, n and a list of 34 exceptional cases G4, . . . , G37.

Fact. Let W ⊂ GL2(C) be a complex reflection group of rank 2. The braid group B(W ) is
isomorphic to a circular group.
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This is mostly a rephrasing of [Ban76, Theorem 1 and Theorem 2]:

- The only non-irreducible cases are groups of the formW = Z/dZ/×Z/d′Z (with d, d′ ⩾ 1).
In this case we have B(W ) ≃ Z× Z ≃ G(2, 2).

- If W = G(de, e, 2) for e odd and d ⩾ 2 or W ∈ {G5, G10, G18}, then B(W ) ≃ G(2, 4).
- IfW = G(de, e, 2) for e even and d ⩾ 2 orW ∈ {G7, G11, G15, G19}, then B(W ) ≃ G(3, 3).
- If W = G(e, e, 2) for e ⩾ 3, then B(W ) ≃ G(2, e).
- If W ∈ {G4, G8, G16}, then B(W ) ≃ G(2, 3).
- If W ∈ {G6, G9, G13, G17}, then B(W ) ≃ G(2, 6).
- If W = G14, then B(W ) ≃ G(2, 8).
- If W = G20, then B(W ) ≃ G(2, 5).
- If W = G21, then B(W ) ≃ G(2, 10).
- If W = G12, then B(W ) ≃ G(3, 4).
- If W = G22, then B(W ) ≃ G(3, 5).

A direct application of Theorem 2.16 then gives

Theorem 2.23. Let W be a complex reflection group of rank 2, and let B(W ) be its braid
group. If α, β ∈ B(W ) are such that αn = βn for some nonzero integer n, then α and β
are conjugate in B(W ).

Remark 2.24. Our approach only covers complex reflection groups of rank 2. Indeed, by
Lemma 2.17, circular groups have homological dimension at most 2, and a complex braid
group of rank r has homological dimension r by [CM14, Proposition 1.1]. Thus only rank
2 complex reflection groups can have a braid group isomorphic to a circular group.

3. ∆-product and hosohedral-type groups

In this section we present hosohedral-type Garside groups as a generalization of circular
groups. These groups are enveloping groups of so-called hosohedral-type monoids. These
monoids were first introduced by Picantin in his PhD thesis under the name “monöıdes
de type fuseau” ([Pic00, Définition 1.3]). In [Pic00, Proposition 2.4], Picantin shows that
these monoids are exactly the Garside monoids whose lattice of simples has the shape of
a hosohedron (“fuseau” in french). The name “hosohedral-type monoid” was suggested to
us by Picantin.

More recently, hosohedral-type groups were identified by Mireille Soergel in [Soe23,
Theorem 4.6] as the Garside groups satisfying a particular nonpositive curvature property
(namely, the systolicity of the flag complex associated to the “Garside presentation” as in
[Soe23, Lemma 4.3]).

Here we introduce these groups as a particular case of a general construction, already
present in [DP99], which we call the ∆-product of Garside monoids.

3.1. ∆-product of Garside monoids. Let (M1,∆1), . . . , (Mh,∆h) be a finite family of
homogeneous Garside monoids that we fix throughout this section. We denote by ℓ1, . . . , ℓh
the associated length functions, and by S1, . . . , Sh the associated set of simples. We also
set A1, . . . , Ah the set of atoms of M1, . . . ,Mh, respectively.

The free product M1 ∗ · · · ∗Mh is not a Garside monoid because two atoms coming from
a different factor Mi do not have any common multiple (in particular, no lcms). We can
fix this by forcing the ∆i to all be equal.

Definition 3.1. Let (M1,∆1), . . . , (Mh,∆h) be a family of homogeneous Garside monoids.
The ∆-product of the Mi is defined by

M1 ∗∆ M2 ∗∆ · · · ∗∆ Mh := ∗hi=1Mi

/
(∆i = ∆j ∀i, j ∈ [[1, h]])

Likewise, we define the ∆-product of the enveloping groups G(Mi) by

G(M1) ∗∆ G(M2) ∗∆ · · · ∗∆ G(Mh) = ∗hi=1G(Mi)
/
(∆i = ∆j ∀i, j ∈ [[1, h]])
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Remark 3.2. The definition of the ∆-product of Garside monoids depends really on the
Garside element and not only on the monoid themselves. For instance, we have M(1, ℓ) ≃
Z⩾0 as a monoid for every ℓ ⩾ 1. However, we have

M(1, p) ∗∆ M(1, q) ≃ ⟨a, b | ap = bq⟩+.
If p, q ⩾ 2, then this monoid has two atoms and cannot be isomorphic to Z⩾0 ≃ M(1, 1)∗∆
M(1, 1). Furthermore, the enveloping group of this monoid is not always isomorphic to
Z = G(M(1, 1) ∗∆ M(1, 1)).

Remark 3.3. Note that, if (M,∆) is a Garside monoid, the monoidM∗∆M(1, 1) is naturally
isomorphic to M . Thus we can assume that all the (Mi,∆i) are distinct from M(1, 1).

We first show that the enveloping group of the ∆-product of the (Mi,∆i) identifies with
the ∆-product of the enveloping groups G(Mi).

Lemma 3.4. Let (M1,∆1), . . . , (Mh,∆h) be a family of homogeneous Garside monoids.
Let also M be the ∆-product M1∗∆ · · ·∗∆Mh. The groups G(M) and G(M1)∗∆ · · ·∗∆G(Mh)
are naturally isomorphic.

Proof. If M,M ′ are two monoids, we denote by Hom(M,M ′) the set of monoid morphisms
from M to M ′. If G and G′ are two groups, Hom(G,G′) is in fact the set of group
morphisms from G to G′. Let H be a group. By definition of the enveloping group and of
the ∆-product, we have natural bijections

Hom(G(M), H) ≃ Hom(M1 ∗∆ · · · ∗∆ Mh, H)

≃ {f ∈ Hom(M1 ∗ · · · ∗Mh, H) | ∀i, j ∈ [[1, h]], f(∆i) = f(∆j)}

≃

{
(fi) ∈

n∏
i=1

Hom(Mi, H) | ∀i, j, fi(∆i) = fj(∆j)

}

≃

{
(fi) ∈

n∏
i=1

Hom(G(Mi), H) | ∀i, j, fi(∆i) = fj(∆j)

}
≃ {f ∈ Hom(G(M1) ∗ · · · ∗G(Mh), H) | ∀i, j ∈ [[1, h]], f(∆i) = f(∆j)}
≃ Hom(G(M1) ∗∆ · · · ∗∆ G(Mh), H)

Applying this to H := G(M) gives a bijection Hom(G(M), G(M)) ≃ Hom(G(M1)∗∆ · · · ∗∆
G(Mh), G(M)). The image of the identity morphism of G(M) under this bijection gives
the desired result. □

From now on, we will identify G(M1 ∗∆ · · · ∗∆ Mh) with G(M1) ∗∆ · · · ∗∆ G(Mh). We
now fix a family (M1,∆1), . . . , (Mh,∆h) of Garside monoids, all distinct from M(1, 1). We
denote by M the associated ∆-product, and by A its set of atoms. Let i ∈ [[1, h]]. By
definition of the ∆-product as a quotient of the free product, there is a natural morphism
φi : G(Mi) → G(M). We also denote by φi the restriction from Mi to M .

Proposition 3.5. [DP99, Proposition 5.3]

The atoms of the monoid M are given by A :=
⊔h

i=1 φi(Ai). Furthermore, (M,∆) is a
homogeneous Garside monoid with simple elements

S =
h⋃

i=1

φi(Si).

Where ∆ = φi(∆i) for any i ∈ [[1, h]]. The Garside automorphism ϕ of (M,∆) is given on
a simple φi(s) by ϕ(φi(s)) = φi(ϕi(s)), where ϕi is the Garside automorphism of (Mi,∆i).

The assertion on the atoms and the assertion that (M,∆) is a homogeneous Garside
monoid are in the original statement of [DP99, Proposition 5.3]. For i ∈ [[1, h]], we identify
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Ai with the subset φi(Ai) of A from now on. The proof of [DP99, Proposition 5.3] can also
be used to show the assertion on the simple elements:

First, let i ∈ [[1, h]] and let s ∈ Si be a simple element of (Mi,∆i). We have ss = ∆i and

φi(s)φi(s) = ∆. Thus φi(s) is simple and φi(s) = φi(s). We also obtain that the Garside

automorphism is given by ϕ(φi(s)) = φi(s) = φi(ϕi(s)). Conversely, we have to show that,
if s ∈ S is a simple element of (M,∆), then there is some i ∈ [[1, h]] and some simple s̃ ∈ Si

with s = φi(s̃). This is a direct consequence of the following lemma.

Lemma 3.6. Let w be a word in A which expresses a simple element s ∈ S. There is some
i ∈ [[1, h]] such that all the letters of w lie inside φi(Ai). The word w then also represents
some s̃ ∈ Si with φi(s̃) = s. Furthermore, if s /∈ {1,∆}, then the integer i and the simple
s̃ ∈ Si are unique.

Proof. Let i ∈ [[1, h]]. For each pair a, b ∈ Ai, we choose two words fi(a, b) and fi(b, a) such
that afi(a, b) and bfi(b, a) are two words in Ai expressing a∨ b in Mi. By [DP99, Theorem
4.1], the monoid Mi admits the following presentation

Mi = ⟨afi(a, b) = bfi(b, a) | a, b ∈ Ai⟩+.
Now, for a ∈ Ai, we choose a word c(a) in Ai representing a in Mi. The proof of [DP99,
Proposition 5.3] gives that M admits the presentation

(1) M ≃

〈
af(a, b) = bf(b, a)

∣∣∣∣∣f(a, b) =
{
fi(a, b) if a, b ∈ Ai

c(a) if a ∈ Ai, b ∈ Aj , i ̸= j

〉+

.

By definition, if w1 = w2 is a relation in this presentation, then we either have

- There is an i ∈ [[1, h]] such that all the letters of both w1 and w2 lie in Ai. In this case,
w1 = w2 also holds in Mi.

- There are two distinct integers i, j ∈ [[1, h]] and two atoms a ∈ Ai, b ∈ Aj such that
w1 = ac(a) and w2 = bc(b). In this case, w1 (resp. w2) represents ∆i in Mi (resp. ∆j in
Mj).

Let w be a word in A which represents ∆ in M , and let a ∈ A be an atom of M . By
assumption, there is a sequence of words w1, . . . , wm inA such that w1 = w, wm = ac(a) and
each wk is equivalent to wk+1 by the use of one relation of presentation (1) for k ∈ [[1,m−1]].
Up to changing the atom a, we can assume that m is the first integer such that wm is equal
to a word of the form bc(b) for some atom b.

Let i ∈ [[1, h]] be such that a ∈ Ai. We claim that for all j ∈ [[1,m]], the word wj contains
letters only in Ai. If this is not the case, then let k0 be the last integer in [[1,m]] such that
wk0 contains letters not lying in φi(Ai) (we have k0 < m by assumption). The defining
relations of (1) giving wk0 = wk0+1 in M then have the form bc(b) = ac(a). Since wk0

and bc(b) both express ∆ in M , we have wk0 = bc(b), which contradicts the minimality
assumption on m.

Since all the letters of wj lie inside Ai for j ∈ [[1,m]], we have that the relations of (1)
giving wj = wj+1 for j ∈ [[1,m − 1]] also hold in Mi. Thus w1 is a word in Ai, which
expresses the element ∆i in Mi.

Let now s ∈ S be a simple element of M . By definition, there is a word w1 = ww2 in A
expressing ∆ such that w expresses s in M . The first part of the proof gives that there is
some i ∈ [[1, h]] such that w1, w and w2 are actually words in Ai. The word w (resp. w2)
then expresses an element s̃ (resp. s̃′) in Mi, with s̃s̃′ = ∆i. We then have s̃ ∈ Si and
φi(s̃) = s.

Suppose now that s /∈ {1,∆}, and let w′ be another word in A expressing s in M .
By definition, there is a sequence of words w1, . . . , wn of words in A, such that w1 = w,
wn = w′ and each wk is equivalent to wk+1 by the use of one relation of presentation (1).
Since s ≺ ∆, none of the wk contain a subword expressing ∆ in M . We deduce that all
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the relations giving wk = wk+1 in M for k ∈ [[1, n − 1]] are between words in Ai and also
hold in Mi. Thus wk also expresses s̃ for all k ∈ [[1, n]]. □

Proposition 3.7. Let i ∈ [[1, n]] and let s ∈ Si. The morphism φi induces an injective
morphism of lattices from {t ∈ Si | t ⪯ s} to {t ∈ S | t ⪯ φi(s)}. Furthermore, if s ̸= ∆i,
then this morphism is also surjective.

Proof. We show the injectivity and surjectivity assumptions before considering lcms and
gcds. Let s ∈ Si and let X and Y denote the two considered sets. Since φi is a morphism
of monoids, it restricts to a poset morphism X → Y . First, we show that φi : X → Y is
always injective. Let t, t′ ∈ X be such that φi(t) = φi(t

′). Let w and w′ be two words in Ai

expressing t and t′, respectively. The words w and w′ express the same element φi(t) in M .
If φi(t) = ∆, then w and w′ are two words in Ai representing ∆ in M . The proof of Lemma
3.6 gives that w and w′ represent the same element in Mi, which is ∆i. If φi(t) ̸= ∆, then
w and w′ express the same element in Si by Lemma 3.6, thus t = t′.

Now, suppose that s ̸= ∆. We show that φi : X → Y is surjective. Let t ⪯ φi(s) in
M . By definition, there is a word w = w1w2 in A expressing φi(s) such that w1 expresses
t. By Lemma 3.6, w and w1 are words in Ai. The word w1 then expresses some element
t̃ ∈ Si such that φi(t̃) = t and φi : X → Y is surjective.

We now show that φi : Si → S is a morphism of lattices. That is, φi preserves right-
lcms and left-gcds. Let s, t ∈ Si be two simples of (Mi,∆i), and let u = s ∧ t. Let
x := φi(s) ∧ φi(t). Since the simple φi(u) is obviously a left-divisor of φi(s) and φi(t), we
have φi(u) ⪯ x. If s = ∆i, then u = t and x = φi(t) = φi(u). Likewise the result is clear
if t = ∆i. We assume from now on that t, s ̸= ∆i. Since s ̸= ∆i (resp. t ̸= ∆i), the first
part of the proof gives the existence of a unique x̃ (resp. x̃′) in Si such that x̃ ⪯ s (resp.
x̃′ ⪯ t) and φi(x̃) = x = φi(x̃

′). Since φi is injective on Si, we get that x̃ = x̃′ is a common
divisor of s and t in Mi. We obtain x̃ ⪯ u, x ⪯ φi(u) and x = φi(u).

Let now v = s ∨ t and y = φi(s) ∨ φi(t). Again, since φi(v) is an obvious right-multiple
of both s and t, we have y ⪯ φi(v). By the first part of the proof, there is a unique ỹ ∈ Si

such that ỹ ⪯ v and φi(ỹ) = y. The first part of the proof also gives that s, t ⪯ ỹ. Thus
v ⪯ ỹ, φi(v) ⪯ φi(ỹ) = y and φi(v) = y. □

Of course, one can show by similar arguments that φi is an injective morphism of lattices
from (Si,⪰) to (S,⪰).

Corollary 3.8. Let s, t be two simple elements in M , both different from ∆ and 1. Assume
that s = φi(s̃) and t = φj(t̃) for i ̸= j, s̃ ∈ Si and t̃ ∈ Sj. We have s∧ t = 1 and s∨ t = ∆
in M . Furthermore, the word st is greedy in (M,∆).

Proof. Let u := s∧ t. By Proposition 3.7, there is a unique ũ ∈ Si (resp. ũ
′ ∈ Sj) such that

φi(ũ) = φj(ũ
′) = u. Since i ̸= j, Lemma 3.6 gives that u = 1. We apply similar reasoning

for lcms. This gives in particular that s ∧ t = 1, thus the path st is greedy. □

Proposition 3.9. Let i ∈ [[1, h]]. The morphism φi : G(Mi) → G(M) preserves left-
weighted factorizations. In particular it is injective.

Proof. We first show that φi : Mi → M preserves greedy normal forms. By definition, we
only have to show that, if st is a greedy word in Mi, then φi(s)φi(t) is a greedy word in
M . If st is a greedy word of length 2 in Mi, then Proposition 3.7 gives

φi(s) ∧ φi(t) = φi(s) ∧ φi(t) = φi(s ∧ t) = 1.

The word φi(s)φi(t) is then greedy by Lemma 1.3.
Let now x = ∆k

i s1 · · · sr be the left-weighted factorization of some x ∈ Mi. Since
∆i ̸⪯ s1 · · · sr, we have ∆ ̸⪯ φi(s1 · · · sr). Furthermore, the word φi(s1) · · ·φi(sr) is greedy
because φi : Mi → M preserves greediness. The word ∆kφi(s1) · · ·φi(sr) is then the
left-weighted factorization of φi(x) by definition. □
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Proposition 3.10. Let i ∈ [[1, h]], and let x ∈ G(Mi). We have φi(SSS(x)) = SSS(φi(x)).
Furthermore, if x is not conjugate to a power of ∆i in Mi, then the centralizer of φi(x) in
G(M) is the image under φi of the centralizer of x in G(Mi).

Proof. Let x be an element of G(Mi). By Proposition 3.9, we have φi(init(x)) = init(φi(x))
and φi(fin(x)) = fin(φi(x)). Thus, we also have φi(cyc(x)) = cyc(φi(x)) and φi(dec(x)) =
dec(φi(x)).

If x is conjugate to some ∆k
i with k ∈ Z, then we have SSS(x) = {∆k} = SSS(φi(x)).

From now on, we suppose that x is not conjugate to any power of ∆. We show that
inf(SSS(x)) = inf(SSS(φi(x)) and sup(SSS(x)) = sup(SSS(φi(x)). First, let x′ ∈ SSS(x),
Proposition 3.9 gives that

inf(SSS(φi(x))) ⩾ inf(φi(x
′)) = inf(x′) = inf(SSS(x)),

sup(SSS(φi(x))) ⩽ sup(φi(x
′)) = sup(x′) = sup(SSS(x)).

Conversely, one can reach an element y of SSS(φi(x)) by applying a sequence of cycling
and decycling to φi(x). Applying the same operations to x gives a conjugate ỹ of x in
G(Mi) such that φi(ỹ) = y. We then have

inf(SSS(x)) ⩾ inf(ỹ) = inf(y) = inf(SSS(φi(x))),

sup(SSS(x)) ⩽ sup(ỹ) = sup(y) = sup(SSS(φi(y))).

Thus, inf(SSS(x)) = inf(SSS(φi(x))) and sup(SSS(x)) = sup(SSS(φi(x))) as claimed.
Now, we show that φi(SSS(x)) ⊂ SSS(φi(x)). Let x′ ∈ SSS(x), we have inf(φi(x

′)) =
inf(x′) = inf(SSS(x)) = inf(SSS(φi(x))), and likewise, sup(φi(x

′)) = sup(SSS(φi(x))).
Since φi(x

′) is conjugate to φi(x), we have φi(x
′) ∈ SSS(φi(x)).

Let x′ ∈ SSS(x), and let s ∈ S be a simple element of M such that φi(x
′)s ∈ SSS(φi(x)).

We show that s ∈ φi(Si). Let x′ = ∆k
i s1 · · · sr be the left-weighted factorization of x′ in

Mi. The left-weighted factorization of φi(x
′) is given by ∆kφi(s1) · · ·φi(sr). We have

φi(x
′)s = ∆k−1ϕk−1(s)φi(s1) · · ·φi(sr)s.

If s /∈ φi(Si), then the words ϕk−1(s)φi(s1) and φi(sr)s are in greedy normal form by
Corollary 3.8. The expression above is then the left-weighted factorization of φi(x

′)s in
M . Thus inf(φi(x

′)s) = k − 1 and φi(x
′)s /∈ SSS(φi(x

′)). The same reasoning shows that

if φi(x
′)s

−1 ∈ SSS(φi(x
′)), then s ∈ φi(Si). An immediate induction then shows that the

connected component of φi(x
′) in CG(φi(x)) is contained in φi(SSS(x)). Since CG(φi(x))

is connected, we have SSS(φi(x)) ⊂ φi(SSS(x)).
This also shows that the conjugacy graph CG(φi(x)) is the image under of CG(x) under

φi, whence the result on centralizers. □

Proposition 3.11. (Periodic elements in a ∆-product)
Let p, q be nonzero integers, and let ρ ∈ G(M) be a (p, q)-periodic element. There is some
i ∈ [[1, h]] and some (p, q)-periodic element σ ∈ G(Mi) such that ρ is conjugate to φi(σ) in
G(M).

Proof. Let ρ ∈ G(M) be a (p, q)-periodic element. If ρ is conjugate to a power of ∆, then
the result is obvious. Otherwise, Proposition 1.11 gives that ρ is conjugate to an element of
the form ∆ks for some s ∈ S. By Proposition 3.5, there is some i ∈ [[1, h]] and some s̃ ∈ S
such that φi(s̃) = s. We then have ∆ks = φi(∆

k
i s̃). The element ∆k

i s̃ is (p, q)-periodic in
Mi by Proposition 3.9. □

Let i ∈ [[1, h]] and let ki be the smallest integer such that ∆ki
i is central in G(Mi). By

Proposition 3.5, the smallest central power of ∆ in G(M) is given by the lcm of the ki for
i ∈ [[1, h]].
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Proposition 3.12. (Center of a nontrivial ∆-product)
Assume that h ⩾ 2. The intersection in G(M) of all the φi(G(Mi)) for i ∈ [[1, h]] is the
subgroup generated by ∆. The center of G(M) is cyclic and generated by the smallest
central power of ∆ in G(M).

Proof. Since h ⩾ 2, we can choose i ̸= j in [[1, h]]. Let xi ∈ G(Mi) and xj ∈ G(Mj) be

such that x := φi(xi) = φj(xj) ∈ G(M). If xi = ∆ki
i s1 . . . sr (resp. xj = ∆

kj
j t1 . . . tu) is the

left-weighted factorization of xi in G(Mi) (resp. of xj in G(Mj)), then by Proposition 3.9,
the left-weighted factorization of x in G(M) is then given by

x = ∆kiφi(s1) · · ·φi(sr) = ∆kjφj(t1) · · ·φj(tu).

We deduce that ki = kj ,r = u and φi(sk) = φj(tk) for all k ∈ [[1, r]]. Since i ̸= j, Lemma
3.6 gives that r = 0 and x is a power of ∆.

Let now x be an element of Z(G(M)), and let i ∈ [[1, h]]. By definition, x lies in the
centralizer of φi(a) for all a ∈ Ai. Since all the Mi are distinct from M(1, 1), the elements
of Ai are not conjugate to a power of ∆. Thus Proposition 3.10 gives that x actually lies in
the image under φi of the common centralizer of all elements of Ai in Mi. In other words

we have x ∈ φi(Z(G(Mi)). We then have that x ∈
⋂h

i=1 φi(Z(G(Mi))) is a power of ∆,
whence the result. □

3.2. Hosohedral-type Garside groups.

Definition 3.13. A Garside monoid (M,∆) is a hosohedral-type monoid if it is a
∆-product of circular monoids. The enveloping group of a hosohedral-type monoid is a
hosohedral-type group.

For instance, torus knot groups are hosohedral-type groups. Indeed, for p, q two positive
coprime integers, we have

⟨a, b | ap = bq⟩ ≃ G(M(1, p) ∗∆ M(1, q))

In his PhD thesis, Picantin introduced hosohedral-type monoids as the Garside monoids
whose lattice of simple elements satisfy a strong property regarding gcds and lcms.

Theorem 3.14. [Pic00, Proposition 2.5]
A finite lattice (S,∧,∨, 0, 1) has hosohedral-type if any couple (s, t) in S satisfies

(a ∧ b, a ∨ b) ∈ {(a, b), (b, a), (0, 1)}
A Garside monoid (M,∆) is a hosohedral-type monoid if and only if the lattice (S,⪯) of
its simple elements has hosohedral-type.

Note that this theorem also covers the case of non-homogeneous Garside monoids, which
we do not consider here.

In his proof, Picantin directly classifies all the Garside monoids whose lattice of simples
is a fixed hosohedral-type lattice, in terms of the length of maximal chains. Under the
notation of [Pic00, Proposition VI.2.5 and Definition VI.2.7], the monoid

fus+[[h
u1,1

1 · . . . · hu1,k1
1 · hu2,1

2 · . . . · hun,kn
n ]]

is isomorphic to the ∆-product

M(u1,1, h1) ∗∆ · · · ∗∆ M(u1,k1 , h1) ∗∆ M(u2,1, h2) ∗∆ · · · ∗∆ M(un,kn , hn).

This property regarding lcms and gcds of simple elements also induces strong geometric
properties for the associated Garside group, as pointed out by Mireille Soergel in [Soe23,
Theorem 4.6]. By [DDGKM, Proposition VI.1.11], every Garside monoid (M,∆) with set
of simples S admits a presentation

(2) M ≃ ⟨S | s · t = st ∀s, t ∈ S such that st ∈ S⟩+
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Theorem 3.15. [Soe23, Theorem 4.6]
Let (M,∆) be a Garside monoid. The flag complex of the Cayley graph of G(M) associated
to presentation (2) is systolic (in the sense of [Soe23, Section 2]) if and only if (M,∆) is
a hosohedral-type monoid.

Again this theorem also covers the case of non-homogeneous Garside monoids.

Example 3.16. In [Soe23, Question after Remark 4.8], Mireille Soergel considers the Garside
group Gk, defined for an integer k ⩾ 2 by the presentation Gk := ⟨a, b | aba = bk⟩. She
asks whether or not this group is isomorphic to a hosohedral-type group. We have the
following isomorphisms of groups, given by Tietze transformations

⟨a, b | aba = bk⟩ = ⟨a, b, x | x = bka−1, aba = bk⟩

= ⟨a, b, x | a = x−1bk, aba = bk⟩

= ⟨b, x | x−1bkbx−1bk = bk⟩

= ⟨b, x | bk+1 = x2⟩.
The last group is a hosohedral-type group. More generally, a conjecture of Picantin ([Pic00,
Conjecture 1]) states that, if M is a Garside monoid with two atoms, then the enveloping
group G(M) is isomorphic to either a group of the form ⟨a, b | ap = bq⟩ for positive
integers p, q, or to an Artin group of dihedral type. In either case this would mean that
the enveloping group of a Garside monoid with two generators is always a hosohedral-type
group.

From now on, let M = M(m1, ℓ1) ∗∆ · · ·M(mh, ℓh) be a hosohedral-type monoid. Using
Remark 3.3, we assume that (mj , ℓj) ̸= (1, 1) for all j ∈ [[1, h]]. We also assume that h ⩾ 2,
otherwise we recover results from Section 2. By Proposition 3.9, we can identify the factors
M(mj , ℓj) (resp. G(mi, ℓi)) with the associated subgroup of M (resp. of G(M)).

To avoid confusion, the simple s(i, p) of the factor M(mj , ℓj) will be denoted by sj(i, p).

3.2.1. Conjugacy. Like in the case of circular groups, an element in a super-summit set of
a hosohedral-type monoid is either rigid or periodic.

Proposition 3.17. Let x be an element of G(M). If x lies in its own super-summit set,
then it is either rigid or periodic.

Proof. The proof imitates the case of circular groups. First, if inf(x) = sup(x), then we
have x = ∆k for some k ∈ Z. In this case, x is obviously both rigid and (1, k)-periodic.

Suppose now that sup(x) = inf(x) + 1. We have x = ∆ksj(i, p) for some j ∈ [[1, h]],
i ∈ [[0,mj − 1]] and 0 < p < ℓj . The element x is periodic if and only if it is periodic as
an element of the factor G(mj , ℓj). By Lemma 2.8, this is equivalent to p + kℓj ≡ 0[mj ].

If this is not the case, the word sj(i, p)ϕ
−k(sj(i, p)) is greedy in M(mi, ℓi). It is then also

greedy in M by Proposition 3.9.
Lastly, suppose that sup(x) > inf(x) + 1. The left-weighted factorization of x is given

by ∆ks1 · · · sr with r > 1. We claim that x is rigid. Otherwise, the word srϕ
−k(s1) is not

greedy. By Corollary 3.8, this implies that sr and s1 lie in the same factor M(mi, ℓi). We
can then apply the last part of the proof of Proposition 2.7 to show that we either have
sup(cyc(x)) < sup(x) or inf(cyc(x)) > inf(x). In both cases, we have x /∈ SSS(x). □

By Proposition 3.11, there are (p, q)-periodic elements in G(M) if and only if there are
(p, q)-periodic elements in some factor G(mj , ℓj). However, two (p, q)-periodic elements
coming from two different factors are not conjugate in general.

Proposition 3.18. Let p, q be integers. Two (p, q)-periodic elements of G(M) are conju-
gate if and only if they both admit a conjugate lying the the same factor G(mj , ℓj).
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Proof. Let ρ, σ be two (p, q)-periodic elements in G(M). If ρ and σ are conjugate, then
SSS(ρ) = SSS(σ). Let x ∈ SSS(ρ). We have either x = ∆ks for some simple s and some
integer k or x = ∆k. In both cases, x is a conjugate of both ρ and σ lying in a fixed factor
M(mi, ℓi) by Proposition 3.5.

Conversely, if x and y are respective conjugate of ρ and σ in M(mi, ℓi), then x and y
are (p, q)-periodic elements of M(mi, ℓi). They are conjugate in G(mi, ℓi) (in particular in
G(M)) by Proposition 2.12. □

Example 3.19. Let n be a positive integer, and consider M = M(1, n) ∗∆ M(1, n) =
⟨a, b | an = bn⟩+. By Proposition 3.10, we have SSS(a) = {a} and SSS(b) = {b}, thus a
and b are two (n, 1)-periodic elements that are not conjugate in G(M).

On the other hand, the conjugacy of non-periodic elements in a hosohedral-type group
behaves in the same way as in a circular group.

Proposition 3.20. Let x ∈ G(M) be a non-periodic element. The super-summit set of x
is made of rigid elements. The only arrows starting from an object y of CG(x) are labeled

by init(y) and fin(y). In particular, one can go from an element of SSS(x) to any other by
a finite sequence of cycling, decycling and application of the Garside automorphism.

Proof. We mimic the proof of Proposition 2.14. Let y ∈ SSS(x). Since x is not periodic,
y is not periodic. It is then rigid by Proposition 3.17, and we have sup(y) > inf(y). We
assume that the left-weighted factorization of y is ∆ksj1(i1, p1) · · · sjr(ir, pr). Let s be a
simple element of M . We have

ys = ∆k−1ϕk−1(s)sj1(i1, p1) · · · sjr(ir, pr)s.
If s ∈ {1,∆}, then ys ∈ SSS(x) is obvious. Otherwise, let j be such that s lies in the factor
M(mj , ℓj). If j /∈ {j1, jr}, we have inf(ys) = k − 1 and y /∈ SSS(x).

- If jr = j1, then the proof of Proposition 2.14 gives that ys ∈ SSS(x) if and only if

s ∈ {init(y),fin(y)}.
- If jr ̸= j1 and j = j1, then the word sjr(ir, pr)s is greedy in M by Corollary 3.8. We

then have ys ∈ SSS(x) if and only if ϕk−1(s)sj1(i1, pr) = ∆, i.e. if s = init(y).

- If jr ̸= j1 and j = jr, then the word ϕk−1(s)sj1(i1, p1) is greedy in M by Corollary 3.8.

We then have ys ∈ SSS(x) if and only if sjr(ir, pr)s = ∆, i.e. if s = fin(y).

□

Theorem 3.21. Let M be a hosohedral-type monoid. If α, β ∈ G(M) are such that αn = βn

for some nonzero integer n, then we either have

- α and β are conjugate.
- α and β are nonconjugate periodic elements of G(M).

Proof. Again, α is periodic if and only if its power αn is periodic, if and only if β is periodic.
Suppose that α and β are not nonconjugate periodic elements of G(M). Then α and β
are either conjugate periodic elements (in which case they are conjugate) or non-periodic
elements. Up to replacing α, β with α−1, β−1, we now assume that n > 0.

We assume from now on that a and b are non-periodic elements of G(M). Up to con-
jugacy, we can assume that a ∈ SSS(a). By Proposition 3.17, we have that a is rigid.
The element x is then rigid as a power of the rigid element a. Let now c ∈ G(M) be
so that bc ∈ SSS(b). Since b is not periodic, bc is rigid as well as xc = (bc)n. We have
x, xc ∈ SSS(x). By Proposition 3.20, there is an finite sequence of cycling, decycling, and
applications of the Garside automorphism sending x to xc. By Lemma 1.9, applying the
same transformations to a gives a rigid element a′ whose n-th power is xc. Again by Lemma
1.9, we have a′ = bc and thus a and b are conjugate. □
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3.2.2. Partial computations of homology. Let M = M(m1, ℓ1) ∗∆ · · · ∗∆ M(mh, ℓh) be a
hosohedral-type monoid. We can construct the Dehornoy-Lafont complex (cf. Section
2.3.1) associated to M to try and compute the homology of G(M). Since the lcm of two
distinct atoms of a hosohedral-type group is ∆ by Corollary 3.8 and Lemma 2.4, we can
mimic the proof of Lemma 2.17 to get

Lemma 3.22. If M is a hosohedral-type monoid with m atoms, we order its atoms by
a0 < a1 < . . . < am−1. We have X0 = {[∅]}, X1 = {[a0], . . . , [am−1]}, X2 = {[a0, ai] | i ∈
[[1,m− 1]]} and Xn = ∅ for n ⩾ 3.

Like in the case of a circular monoid, this implies that a hosohedral-type group has
homological dimension at most 2. Furthermore, as H2(G(M),Z) is free, the computation
of G(M)ab is sufficient to determine all the integral homology of G(M). Unfortunately, we
are only able to compute the free part of G(M)ab.

Proposition 3.23. Let M = M(m1, ℓ1) ∗∆ · · · ∗∆ M(mh, ℓh) be a hosohedral-type monoid.
For i ∈ [[1, h]], denote by di the gcd of mi ∧ ℓi. The free part of G(M)ab has rank 1 +∑h

i=1(di − 1).

Proof. First, let j ∈ [[1, h]]. Let also e0, . . . , ed−1 denote the canonical basis of Zdj . By
Lemma 2.18, the morphism sj(i, 1) 7→ ei′ , where i′ is the remainder in the Euclidean

division of i by dj induces an isomorphism between G(mj , ℓj) and G(m, ℓ)ab ≃ Zdj . Under
this isomorphism, we have

∆j = sj(0,m) 7→

dj−1∑
i=0

ei


mj
dj

=

dj−1∑
i=0

mj

dj
ei.

Let A ≃ Z
∑n

i=1 di be the direct product of the G(mi, ℓi)
ab for i ∈ [[1, h]]. The isomorphisms

G(mj , ℓj)
ab ≃ Zdj described above induce a morphism p from the free product of the

G(mi, ℓi) to A, and we have A = (G(m1, ℓ1) ∗ · · · ∗G(mh, ℓh))
ab. We then have

G(M)ab = A
/
⟨p(s1(0,m1))− p(si(0,mi)), ∀i ∈ [[2, h]]⟩

as the vectors p(s1(0,m1))− p(si(0,mi)) are linearly independent, they span a submodule
of A of rank h− 1. The free part of G(M)ab then has rank

h∑
i=1

di − h+ 1 = 1 +

h∑
i=1

(di − 1).

□

Example 3.24. Let p, q ⩾ 2 be integers, and consider the group

G := ⟨a, b | ap = bq⟩ ≃ G(M(1, p) ∗∆ M(1, q)).

The proof of Proposition 3.23 gives that Gab is isomorphic to the quotient of Z2 by
the submodule generated by the vector p(s1(0, p)) − p(s2(0, q)) = (−p, q). We obtain
H1(G,Z) = Z⊕ Z/dZ, where d = p ∧ q.
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