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Abstract. The family of J-groups was introduced by Achar and Aubert with

the goal of providing Coxeter-like combinatorial tools for studying rank 2 complex

re�ection groups. However, J-groups lack an explicit presentation with abstract

re�ections as generators. This gap was �lled by Gobet, and later by the second

author, for the subfamily of so-called J-re�ection groups. The obtained presenta-

tions then gave rise to a concept of J-braid group, which coincides with the link

groups of torus necklaces.

In this paper we study a generalization of J-groups. We determine which of

these groups are �nitely generated. We show that, as for classical J-groups, the
family of �nite generalized J-groups coincides with the family of rank 2 complex

re�ection groups. We also show that �nitely generated generalized J-groups coin-
cide with what we call the torsion quotients of J-braid groups. We deduce explicit

presentations for all �nitely generated generalized J-groups, where the generators
are abstract re�ections. We also complete the classi�cation of these groups up to

re�ection isomorphism.

As a byproduct of these results, we obtain that a quotient of a Seifert link

group obtained by adding torsion to meridians somehow determines the link up

to isotopy. Moreover, such a quotient is �nite if and only if it is isomorphic to a

complex re�ection group of rank two.
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1. Introduction

It is well-known since the work of Coxeter that the family of (�nite) real re�ection
group coincides with the family of �nite Coxeter groups (see [7],[8]). This allows for
the use of the rich combinatorics of Coxeter groups in the study of real re�ection
groups. Unfortunately, no analogue of the result of Coxeter is known for complex
re�ection groups. The search for such an analogue, at least in the case of rank 2
complex re�ection groups, is the motivation for Achar & Aubert's paper [1], where
they de�ned the family of J-groups:
Let k, n,m be positive integers. The group J(k, n,m) is de�ned by the group

presentation

⟨s, t, u | sk = tn = um = 1, stu = tus = ust⟩,
1



2

and it is called a parent J-group. Now, if k′, n′,m′ are positive and pairwise coprime
integers which respectively divide k, n,m, the J-group J

(
k n m
k′ n′ m′

)
is de�ned as the

normal closure of {sk′ , tn′
, um

′} in J(k, n,m).
We know that every rank two complex re�ection group is the normal closure of

some re�ections in one of the groups G(2c, 2, 2), G7, G11 or G19 in Shephard-Todd's
notation. Inspecting [3, Tables 1-4], one sees that the aforementioned groups are
parent J-groups and so every rank two complex re�ection group is a (�nite) J-group.
The main result of [1] is the converse statement:

Theorem 1.1. [1, Theorem 1.2] A group is a rank two complex re�ection group if
and only if it is a �nite J-group.

In [14], generalizing the work of Gobet in [12], the second author studied the
speci�c case of J-groups where (at least) one of k′, n′ or m′ is equal to 1. In this
case we have a uniform presentation for these groups [14, Theorem 2.29]. Moreover,
these groups are classi�ed up to re�ection isomorphism [14, Theorem 1.6] and their
centers are known [14, Theorem 1.5]. Later, in [15], the second author also de�ned
and studied J-braid groups attached to J-re�ection groups, thus giving a Coxeter-
like generalization of complex re�ection groups of rank two and their braid groups.
Moreover, connections with the triangle Von Dyck groups on the one hand and Seifert
link groups on the other hand were obtained in [13].

The purpose of this article is to de�ne and study a family of groups we call gen-
eralized J-groups, and to extend to this case previous results on J-re�ection groups.
Since our generalization contains the whole family of classical J-groups, our results
also applies in this case. We also complete the correspondence between Seifert links
and J-braid groups. As a byproduct, we give a new perspective on rank two complex
re�ection groups as the family of �nite torsion quotients of Seifert link groups.

De�nition 1.2 (Generalized J-groups). Let k1, . . . , kp ∈ N⩾2 ∪ {∞} and write
K := (k1, . . . , kp). The group J(K) is de�ned by the group presentation

⟨s1, . . . , sp | s1s2 · · · sp = s2 · · · sps1 = · · · = sps1 · · · sp−1, s
ki
i if ki < ∞⟩. (1.1)

and it is called a parent generalized J-group. Now, if k′1, . . . , k
′
p ∈ N⩾1 are respective

divisors of k1, . . . , kp, and writing K ′ = (k′1, . . . , k
′
p), the generalized J-group J

(K
K′
)

is de�ned as the normal closure of {sk
′
i

i | i ∈ [[1, p]]} in J(K).

Notice that for p ⩽ 3, k1, k2, k3 < ∞, and k′1, k
′
2, k

′
3 pairwise coprime, we recover

the notion of classical J-groups.
Following the de�nition given by Gobet in [12], we call conjugates in J(K) of non-

trivial powers of elements in {sk
′
i

i | i ∈ [[1, p]]} the re�ections of J
(K
K′
)
. Still following

[12], we say that an isomorphism between two generalized J-groups is a re�ection
isomorphism if it induces a bijection on the set of re�ections.

In Section 3, we study several group theoretic properties of generalized J-groups.
Our approach takes advantage of a relationship between generalized J-groups and
some alternating subgroups of particular Coxeter groups. We call these Coxeter
groups polygonal Coxeter groups (as a generalization of the triangle Coxeter groups)
and we study them in Section 2.
We can separate three mutually exclusive cases in the study of generalized J-

groups:

(1) The generalized parent J-group is a �nite group.
(2) The generalized parent J-group is in�nite, but the generalized J-group has

�nite index in its generalized parent J-group.
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(3) The generalized J-group is nontrivial and has in�nite index in its generalized
parent J-group.

These three cases of course cover all generalized J-groups, and they are recognizable
from looking at the generalized J-group alone:

Theorem 1.3 (Proposition 3.11 and Corollary 3.14).

• A generalized J-group is �nite if and only if we are in case (1).
• A generalized J-group is in�nite and �nitely generated if and only if we are
in case (2).

• A generalized J-group is in�nitely generated if and only if we are in case (3).

Since we easily determine which generalized parent J-groups are �nite (see Lemma
3.9), we obtain the list of all �nite generalized J-groups. In particular no new �nite
groups arise as generalized J-groups:

Corollary 1.4 (Corollary 3.15). A group is isomorphic to a �nite generalized J-
group if and only if it is isomorphic to a complex re�ection group of rank two.

Specializing to the case of classical J-groups, Theorem 1.3 answers [16, Question
1.1.2].
Then we compute the center of generalized J-groups. We obtain that the center

of a generalized J-groups allows us to recognize cases (1), (2) and (3):

Proposition 1.5 (Proposition 3.22).

• In case (1), the center is either a �nite cyclic group or a direct product of two
�nite cyclic groups.

• In case (2), the center is in�nite cyclic.
• In case (3), the center is trivial.

This result again generalizes [14, Theorem 1.5] for J-re�ection groups. Lastly, we
get a description of torsion elements in in�nite generalized J-groups (i.e. cases (2)
and (3)).

Corollary 1.6 (Corollary 3.23). If a generalized J-group is in�nite, its torsion ele-
ments are precisely its �nite order re�ections.

In Section 4, we give the de�nition of J-braid groups and their torsion quotients.
The family of J-braid groups was originally de�ned by the second author in [15] as a
combinatorial generalization of rank 2 complex braid groups. The family of J-braid
groups actually consists of 4 related subfamilies depending on two positive integer
parameters n,m.
The group B∗

∗(n,m) has generators {x1, . . . , xn, y, z} and a presentation depending
on n and m (see De�nition 4.1 for the actual presentation). The conjugates of the
generators are called the (braid) re�ections of B∗

∗(n,m). The groups B∗(n,m) (resp.
B∗(n,m), B(n,m)) are de�ned as the quotient of B∗

∗(n,m) by the normal closure of
y (resp. of z, of {y, z}).
After some reminders on J-braid groups, we introduce the other main concept of

the article, which is that of torsion quotient of J-braid group. Concretely, a torsion
quotient of a given J-braid group B is the quotient of B by the normal closure of some
(non-trivial) powers of its braid re�ections. As in the case of generalized J-groups,
we de�ne re�ections as conjugates of nontrivial powers of the generators, and we
extend to this context the de�nition of re�ection isomorphism.
The main result of Section 4 is that torsion quotients of J-braid groups are re-

�ection isomorphic to �nite-type generalized J-groups. In order to be able to give a
precise statement, we need some notation. A torsion quotient of a J-braid group B
is determined by the exponents of the generators of which we consider the normal
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closure. The exponents of the generators of the form xi form a tuple K, while the
integers b, c are the respective exponents for the generators y and z (if B admits such
generators). With this notation we have the following result:

Theorem 1.7 (Corollary 4.15). Let n,m be positive integer with gcd d, and let
n′ := n

d , m
′ := m

d . Let also K = (k1, . . . , kd) ∈ (N⩾2∪{∞})d and b, c ∈ (N⩾2∪{∞}).
We have the following re�ection isomorphisms:

• B∗
∗(n,m;K, b, c) ∼=Ref J

(
K bn′ cm′

d·1 n′ m′
)
.

• B∗(n,m;K, c) ∼=Ref J
(

K n′ cm′

d·1 n′ m′
)
.

• B∗(n,m;K, b) ∼=Ref J
(

K bn′ m′

d·1 n′ m′
)
.

• B(n,m;K) ∼=Ref J
(

K n′ m′

d·1 n′ m′
)
.

where d · 1 denotes the d-tuple (1, . . . , 1).

In particular, every torsion quotient of a J-braid group is re�ection isomorphic
to some �nitely generated generalized J-group. Section 5 is devoted to the proof of
the converse statement. This proof relies on a preliminary classi�cation of �nitely
generated generalized J-groups (see Lemma 5.1). We then proceed in a case-by-case
approach, the last case being handled partially by computer.

Theorem 1.8 (Theorem 5.2). Every �nitely generated generalized J-group is re�ec-
tion isomorphic to a torsion quotient of J-braid group.

Since torsion quotients of J-braid groups are de�ned by explicit presentations with
abstract re�ections as generators, this result also provides explicit presentations of
generalized J-groups with abstract re�ections as generators.
One of the preliminary motivations for this paper was to determine the �nite

torsion quotients of J-braid groups, and more speci�cally of J-braid groups of the
form B(n,m). The de�ning presentation of the group B(n,m) coincides with the
de�ning presentation of the circular group G(n,m) studied by the �rst author in [11].
This question had already been investigated in several cases by di�erent authors.

• In [9], Coxeter studied torsion quotients of dihedral Artin groups, that is, of
groups of the form B(2,m;K). He classi�es all �nite such quotients (see [9,
Section 6]).

• The results of Achar and Aubert in [1] give in particular a complete list of
the �nite torsion quotients of B(3, 3) (namely, �nite parent J-groups).

• In [12], Gobet studied groups of the form B(n,m;K) with n∧m = 1. They are
called toric re�ection groups in loc. cit. and they are denoted by W (k, n,m).
Gobet realizes these groups as J-groups, showcasing the �rst connection be-
tween J-groups and link groups. He moreover completes their classi�cation
up to re�ection isomorphism, yielding in particular a classi�cation of the
�nite groups B(n,m;K) with n,m coprime.

Theorem 1.7 combined with the classi�cation of �nite generalized J-groups then
yields the following result:

Proposition 1.9. There are no other �nite torsion quotients of J-braid groups than
those identi�ed in [9],[1] and [12].

Since circular groups are particular cases of J-braid groups, this proposition also
applies to circular groups.

Notice that the generalized J-groups appearing in Theorem 1.7 share the property
that the bottom set of parameters contains at most two entries di�erent from 1, in
which case they are coprime. We call generalized J-groups sharing this property
reduced J-groups. Note that if p = 3, the family of reduced J-groups coincides
with that of J-re�ection groups as de�ned by the second author in [14]. Combining
Theorem 1.7 and Theorem 1.8, we obtain:
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Proposition 1.10. Every �nitely generated generalized J-group is re�ection isomor-
phic to a reduced J-group.

In Section 6, we complete the classi�cation of reduced J-groups up to re�ection
isomorphism:

Proposition 1.11 (Proposition 6.13). Let W1 := J
(K
K′
)
and W2 := J

(L
L′
)
be two

reduced J-groups.

(a) The group W1 is abelian if and only if p ⩽ 2, in which case W1
∼=Ref J

(
k1/k′1

1

)
or W1

∼=Ref J
(
k1/k′1 k2/k′2

1 1

)
depending on the length of K.

(b) If W1 and W2 are nonabelian, then we have W1
∼=Ref W2 if and only if p = q

and if there is σ ∈ Sp such that σ(K) = L and σ(K ′) = L′.

Combining this with Theorem 1.8 and Theorem 1.7, we may see reduced J-groups
as canonical representatives of re�ection isomorphism classes of generalized J-groups.
Moreover, using Theorem 1.7, we can complete the classi�cation of torsion quotients
of J-braid groups up to re�ection isomorphism. We skip the complete statement
here (see Theorem 6.17 for a complete statement). We give here a consequence on
the classi�cation of J-braid groups

Corollary 1.12 (Corollary 6.19). Let B,B′ be two J-braid groups, and let W,W ′

be respective torsion quotients of B and B′. If W and W ′ are re�ection isomorphic,
then so are B and B′.

Specializing to the case of J-re�ection groups, Corollary 1.12 solves [16, Conjecture
3.2.3].

Lastly, we detail the connection with Seifert links in Section 7. In [13], the second
author showed that the family of J-braid groups coincides with that of torus necklace
groups, an important family of Seifert link groups. Under this correspondence, braid
re�ections of the J-braid group correspond to meridians in the link group. In this
spirit, given a link L, we can de�ne a torsion quotient of L as quotient of its link
group by the normal closure of some powers of meridians. Combining the results of
[13] with Theorem 1.7 and Theorem 1.8, we obtain one of the main results of this
article:

Theorem 1.13. The following families of groups coincide, up to isomorphism pre-
serving the set of generators

• Finitely generated generalized J-groups (generators: re�ections)
• Reduced J-groups (generators: re�ections)
• Torsion quotients of J-braid groups (generators: re�ections)
• Torsion quotients of torus necklaces (generators: nontrivial powers of images
of meridians).

Combining Corollary 1.4 and Theorem 1.13, with very little additional work we
are able to give a new point of view for complex re�ection groups of rank two:

Corollary 1.14. The complex re�ection groups of rank two are precisely the �nite
torsion quotients of Seifert links.

The last main result of this article is the classi�cation of torsion quotients of Seifert
links up to isomorphisms which preserves the generators. The following result is
slightly more general than Corollary 1.12, although the additional cases are easily
dealt with.

Theorem 1.15 (Theorem 7.7). If two torsion quotients of Seifert links are isomor-
phic in a way which preserves the nontrivial powers of images of meridians, then the
underlying links are isotopic.
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2. Preliminaries on Coxeter groups

2.1. Elementary de�nitions and results. Recall that a Coxeter graph is an edge-
weighted simple graph Γ = (Γ,m), where m takes values in N⩾2. Given a Coxeter
graph Γ, we will write S for the set of vertices of Γ. The Coxeter group W = W [Γ]
attached to a Coxeter graph Γ is de�ned by the following group presentation:〈

S | s2 = 1∀s ∈ S; (st)m{s,t} = 1 for all {s, t} ∈ E(Γ)
〉
. (2.1)

The cardinality of S is the rank of W [Γ]. If S cannot be decomposed as a disjoint
union S1 ⊔ S2 such that every vertex of S1 is connected to every vertex of S2 by an
edge of length two, we say that W [Γ] is irreducible.
For a subset S′ ⊂ S, we denote by WS′ the subgroup of W generated by S′. It

is classical (see [2, Section IV.1.8]) that WS′ is the Coxeter group attached to the
full subgraph of Γ whose vertex set is S′. The subgroup WS′ is called a standard
parabolic subgroup of W . A parabolic subgroup of W is the conjugate of a standard
parabolic subgroup
Any Coxeter group W admits a natural morphism W → Z/2Z, sending every

generator s ∈ S to 1. The kernel of this morphism is the alternating subgroup W+

of the Coxeter group W .
Let W be a Coxeter group. We give a short list of results we will use in the sequel:

• The order of an element w ∈ W is �nite if and only if w belongs to a �nite
parabolic subgroup of W [2, Exercise 2, Section 4, Chapter 5].

• If the rank of W is at least 3, then Z(W+) ⊂ Z(W ). In particular, if W is
in�nite and irreducible, then Z(W+) is trivial [12, Proposition 3.1].

• If W is irreducible, in�nite and non-a�ne, each �nite index subgroup of W
has trivial center [19, Proposition 6.4].

2.2. Polygonal Coxeter groups. One part of the approach of Gobet in [12] for
studying torsion quotients of circular groups with coprime parameters consists in
relating such a quotient to the alternating subgroup of a triangle Coxeter Group.
We will use similar techniques when dealing with arbitrary circular groups, but the
Coxeter groups involved form a larger family, which we call polygonal Coxeter groups.
In this section, we �x an integer d ⩾ 3, along with a d-tuple K := (k1, . . . , kd) in

(N⩾2 ∪ {∞})d.

De�nition 2.1 (Polygonal Coxeter group). We de�ne a Coxeter graph ΓK as
follows:

• The set of vertices is a set {v1, . . . , vd} of cardinality d (the indices are seen
modulo d).

• All edges have form {vi, vi+1}. Moreover, the pair {vi, vi+1} is actually an
edge if and only if ki < ∞, in which case its weight is ki.

The group WK is the Coxeter group W [ΓK ], which we call the polygonal Coxeter
group attached to K.

By construction, the Coxeter presentation of WK is≠
s1, s2, . . . , sd

∣∣∣∣ s2i = 1 for all i = 1, . . . , d
(sisi+1)

ki = 1 for all i = 1, . . . , d such that ki < ∞

∑
, (2.2)
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where the indices are seen modulo d.

Remark 2.2. Using the classi�cation of �nite Coxeter groups (see [8]), the group
WK is �nite if and only if K ∈ {(2, 3, 3), (2, 3, 4), (2, 3, 5)} ∪ {(2, 2, l)}l⩾2 up to per-
mutation. The only cases in which WK can be in�nite and not irreducible are
K = (∞, 2, 2) K = (2,∞, 2), K = (2, 2,∞) and K = (2, 2, 2, 2). The only cases
were WK is a�ne are K = (3, 3, 3), (2, 3, 6), (2, 4, 4) or (2, 2, 2, 2) (again up to per-
mutation).

In [2], a presentation for the alternating group of a given Coxeter group is given.
Specialising this presentation to WK yields the following result:

Proposition 2.3. [2, Exercise 9, Section 1, Chapter 4] The group W+
K admits the

following group presentation:Æ
b1, . . . , bd−1

∣∣∣∣∣ bkd1 = b
kd−1

d−1 = 1

(bib
−1
i+1)

ki = 1 for all i ∈ [[1, d− 2]]

∏
, (2.3)

where the relation corresponding to i ∈ [[1, d− 2]] is empty if ki = ∞.

Using this, we obtain another presentation of W+
K :

Corollary 2.4. The group W+
K admits the group presentation≠

a1, a2, . . . , ad

∣∣∣∣ akii = 1 for i ∈ [[1, d]] with ki < ∞
a1a2 · · · ad = 1

∑
. (2.4)

Proof. Let H be the group de�ned by Presentation (2.4). We de�ne an isomorphism
between the groups H and W+

K .

First, we de�ne a morphism φ from H to W+
K by setting

∀i ∈ [[1, d]], ai 7→


bib

−1
i+1 if i ∈ [[1, d− 2]],

bd−1 if i = d− 1,

b−1
1 if i = d.

Indeed, we have φ(ai)
ki = 1 for all i ∈ [[1, d]] and

1 = (b1b
−1
2 )(b2b

−1
3 ) · · · (bd−2b

−1
d−1)bd−1b

−1
1 = φ(a1)φ(a2) · · ·φ(ad).

The inverse of this morphism is given by setting b1 7→ a−1
d and bi 7→ (ada1 · · · ai−1)

−1

for i ∈ [[2, d]]. This concludes the proof. □

We �nish this section by establishing some group theoretic results on polygonal
Coxeter groups. Namely, we describe the centers and torsion elements of in�nite
polygonal Coxeter groups, and, we give the classi�cation of polygonal Coxeter group
up to group isomorphism.

Corollary 2.5. The center of W+
K is trivial.

Proof. If WK is �nite, this is proven in [12, Proof of Theorem 3.3]. If WK is in�nite
and irreducible, then the result is a direct application of [12, Proposition 3.1].
The only cases where WK is in�nite and reducible are K = (∞, 2, 2) and K =
(2, 2, 2, 2). For K = (∞, 2, 2), Presentation (2.4) reads〈

a1, a2, a3 | a22 = a23 = a1a2a3 = 1
〉
,

thus W+
K is isomorphic to Z/2Z ∗ Z/2Z, whose center is trivial.

For K = (2, 2, 2, 2), the group WK is (Z/2Z ∗ Z/2Z)× (Z/2Z ∗ Z/2Z), whose center
is trivial. Applying [12, Proposition 3.1] again yields that Z(W+

K ) is trivial in this
case. This concludes the proof. □

Proposition 2.6. Let K ∈ (N⩾2 ∪ {∞})d and σ ∈ Sd. Write σ(K) for the tuple
(kσ(1), . . . , kσ(d)). We have W+

K
∼= W+

σ(K).
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Proof. In this proof, we use Presentation (2.4). It is enough to show the result for
the permutations (1, 2) and (1, 2, . . . , d), since these two permutations generate Sd.
For (1, 2, . . . , d), the result is immediate. Let then σ = (1, 2).
For the remainder of the proof, we write ai for the generators of W

+
K and bi for the

generators of W+
σ(K). We obtain a well-de�ned morphism from W+

K to W+
σ(K) by

setting

ai 7→


b−1
2 if i = 1,

b−1
1 if i = 2,

(b3 · · · bi−1)b
−1
i (b3 · · · bi−1)

−1 if i ∈ [[3, d]].

Exchanging the role of bi and ai yields a morphism from Wσ(K) to Wσ2(K) = WK ,
which is the inverse of the �rst morphism. This concludes the proof. □

Proposition 2.7. If WK is in�nite, then an element w in W+
K has �nite order if

and only it is a conjugate to a power of some generator ai in Presentation (2.4) such
that ki is �nite.

Proof. We mentioned in Section 2 that the torsion elements of WK are exactly the
conjugates of elements lying in �nite standard parabolic subgroups. The �nite stan-
dard parabolic subgroups of WK are those generated by two adjacent vertices in
ΓK with �nite length. Now, recall that given a Coxeter group W and a parabolic
subgroup W ′ < W , the alternating subgroup of W ′ can be described as W ′ ∩W+.
Since the elements {a1, . . . , ad} are the generators of the alternating subgroups of
the standard parabolic subgroups generated by two adjacent vertices, this concludes
the proof. □

Corollary 2.8. Assume that WK is in�nite, and let p be the number of coordinates
of K equal to ∞. There are d − p conjugacy classes of maximal �nite subgroups of
W+

K . The �nite groups in these d− p classes are isomorphic to the Z/kiZ such that
ki is �nite, in which case they are conjugates to ⟨ai⟩.

Proof. The proof of [12, Proposition 4.6] only uses that every �nite standard parabolic
subgroup of the considered Coxeter groups has rank at most two, which is true in
our case. Thus, the aforementioned proof carries out in our setting. □

Lemma 2.9. Assume that W+
K is in�nite. For i ∈ [[1, d]], the group ⟨ai⟩ is a maximal

cyclic group of W+
K .

Proof. By Proposition 2.6, we can assume that i = 1.
First, assume that k1 is �nite. In this case, we know by Corollary 2.8 that ⟨a1⟩

is a maximal �nite subgroup of W+
K . Since a1 has �nite order, any cyclic group

containing ai must be �nite and we have the result.
Now, assume that k1 is in�nite. In this case, we can replace a1 by (a2 · · · ad)−1 in

Presentation (2.4) to obtain W+
K ≃ Z/k2Z ∗ · · · ∗ Z/kdZ. The existence of a normal

form in free products of cyclic group then implies that (a2 · · · ad) does not admit
(nontrivial) roots. Again, this gives the desired result. □

Proposition 2.10. Assume that W+
K is in�nite. For i ∈ [[1, d]] and n ∈ Z∗, if ani is

nontrivial, then CW+
K
(ani ) = ⟨ai⟩.

Proof. If W+
K is a�ne, then ani is an a�ne rotation, with exactly one �xed point

P . If g is a positive isometry of the Euclidean plane which centralizes ani , then
g.P = P and g is a rotation of center P . The centralizer of ani in the group of
positive isometries is then isomorphic to R. Since W+

K is discrete, the centralizer of

ani in W+
K is a discrete subgroup of R: it is a cyclic group. Since ⟨ai⟩ ⊂ CW+

K
(ani ),

we have the result by Lemma 2.9.
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If W+
K is not a�ne, hence a Fuchsian group, we can apply [17, Theorem 2.3.2 and

2.3.5], which gives that the centralizer of aki in W+
K is a cyclic group. Again, since

⟨ai⟩ ⊂ CW+
K
(ani ), we have the result by Lemma 2.9. □

Proposition 2.11. Let K1 ∈ (N⩾2 ∪ {∞})d1, K2 ∈ (N⩾2 ∪ {∞})d2. We have
W+

K1

∼= W+
K2

if and only if d1 = d2 and K1 = K2 up to permutation.

Proof. The if statement is exactly Proposition 2.6 and we only have to show the only
if part.
If the groups are �nite, this can be seen for example in [12, Table 2]. Assume then

that the groups are in�nite.
If W+

K1

∼= W+
K2
, the quotients of these groups by the normal closure of their torsion

elements are isomorphic as well. Using Proposition 2.7, these quotients are isomor-
phic to a free group of rank one less than the number of in�nite indices in K1 and
K2, hence these numbers are equal, say p.
Moreover, Corollary 2.8 identi�es the multisets {{k1,1, . . . , k1,d1−p}} and
{{k2,1, . . . , k2,d2−p}}. Thus, d1 − p = d2 − p so that d1 = d2. We conclude that up to
permutation, the �nite parameters of K1 and K2 are the same, which concludes the
proof. □

2.3. Subgroups of alternating polygonal Coxeter groups. In the following
sections, we will be able to study torsion quotients by relating them to particular
subgroups of some group of the form W+

K .
In this section, we �x a positive integer d, along with a d-tuple K := (k1, . . . , kd)

in (N⩾2 ∪ {∞})d. We also �x another tuple K ′ = (k′1, . . . , k
′
d) in (N⩾1 ∪ {∞})d such

that k′i divides ki if ki < ∞, and such that k′i = ∞ implies ki = ∞.
We consider the presentation (2.4) of the group W+

K , and we de�ne W+
K (K ′) to

be the normal closure of the elements a
k′i
i in W+

K . By construction, the quotient

W+
K/W+

K (K ′) is isomorphic to W+
K′ , or more precisely to W+

K′′ , where K ′′ is obtained
from K ′ by removing the entries equal to 1.
The main purpose of this section is to prove the following result:

Proposition 2.12. If the group W+
K (K ′) is nontrivial, then it is �nitely generated

if and only if it has �nite index in W+
K .

An easy consequence of Schreier's lemma is that a �nite index subgroup in a
�nitely generated group is again �nitely generated. In particular, it is su�cient to
show that if W+

K (K ′) is nontrivial and has in�nite index in W+
K , then it is not �nitely

generated. In order for W+
K (K ′) to have in�nite index in W+

K , it is necessary for W+
K

to be in�nite.
Let X be either the Euclidean plane or the hyperbolic plane. We can consider a

convex polygon P in X whose dihedral angles are π/ki for i ∈ [[1, d]] (or 0 when ki
is in�nite). By [21, Theorem 7.1.3 and 7.1.4], the group generated by the re�ections
of X relative to the sides of P is isomorphic to WK . Moreover, this group admits P
as a fundamental domain for its action on X.
If P is an a�ne polygon, then WK is an a�ne Coxeter group. By Remark 2.2, we

have K = (3, 3, 3), (2, 3, 6), (2, 4, 4) or (2, 2, 2, 2). We will deal with these cases at the
end of the proof. Otherwise, P is an hyperbolic polygon, and WK is a discrete group
of isometries of the hyperbolic plane. The subgroup W+

K is then a discrete group of
orientation preserving isometries of the hyperbolic plane, i.e. a Fuchsian group.
The theory of Fuchsian group is well known, we use results from [21] and [17]

regarding these groups.
The �rst thing we need to do in this case is to prove that if W+

K (K ′) is nontrivial,

then it is in�nite. If W+
K (K ′) is nontrivial, then it contains some nontrivial element

w := a
k′i
i with k′i < ki. If this element has in�nite order, then of course W+

K (K ′)
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is in�nite, so we can assume that w has �nite order. By [17, Theorem 2.3.3], the
centralizer H of w in W+

K consists of the elements of W+
K whose actions on the

hyperbolic plane �x the same points w. Since H is discrete as a subgroup of W+
K , it

is a then a cyclic group by [17, Theorem 2.3.5]. Moreover, H is �nite since it contains
the �nite order element w. SinceW+

K is in�nite, the index of H inW+
K is in�nite since

H is �nite. We conclude by the orbit-stabilizer theorem that the conjugacy class of
w in W+

K , which is included in W+
K (K ′), is in�nite so that W+

K (K ′) is in�nite.

Now, let us show that W+
K (K ′) is �nitely generated if and only if it has �nite index

in W+
K . By [17, Theorem 3.5.4 and 4.6.1], a Fuchsian group is �nitely generated if

and only if it is geometrically �nite. By [17, Theorem 4.1.1 and 4.5.1 and 4.5.2], the
area of the fundamental domain of a Fuchsian group is �nite if and only if the group
is geometrically �nite and of the �rst kind.
Now, the polygon P has �nite hyperbolic area by [21, Exercise 3.5.13], thus W+

K is

a geometrically �nite Fuchsian group of the �rst kind. By [21, Theorem 12.2.1], W+
K

is nonelementary since it is of the �rst kind, and thus W+
K (K ′) is also a Fuchsian

group of the �rst kind by [21, Theorem 12.2.14] since it is in�nite and normal in W+
K .

Since W+
K (K ′) is of the �rst kind, we obtain that it is �nitely generated if and only

if the area of a fundamental fomain for W+
K (K ′) is �nite. However, by [21, Theorem

6.7.3], the area of such a domain is the product of the area of P with the index of
W+

K (K ′) in W+
K , which terminates the proof in this case.

It remains to prove the result for the case where WK is a�ne. First assume that
K = (2, 2, 2, 2). If W+

K (K ′) is nontrivial, then W+
K/W+

K (K ′) = W+
K′ is a quotient of

W+
(2,2,2) which is �nite. The group W+

K (K ′) then has �nite index in W+
K and there is

nothing to show.
Otherwise, we have d = 3 and K = (k1, k2, k3). If ki = 1 for some i, then

W+
K/W+

K (K ′) = W ′+
K is a quotient of a group of the form W+

(p,q), which is always

�nite. We can then assume that no k′i is equal to one. In particular if ki is a prime,
then we can assume that k′i = ki. We can also assume that K ′ ̸= K since otherwise
W+

K (K ′) is trivial and there is nothing to show.

• If K = (3, 3, 3), then there is no remaining possibility for K ′ and there is
nothing to show.

• If K = (2, 3, 6), then K ′ = (2, 3, 2) or (2, 3, 3). In both cases W+
K/W+

K (K ′)
is �nite by Remark 2.2 and there is nothing to show.

• If K = (2, 4, 4), then K ′ = (2, 2, 2), (2, 2, 4) or (2, 4, 2). In all cases the
quotient W+

K/W+
K (K ′) is �nite by Remark 2.2 and there is nothing to show.

Now that the proof of Proposition 2.12 is completed, we �nish this section with a
corollary regarding the center of the group W+

K (K ′).

Corollary 2.13. Assume that W+
K is in�nite. If W+

K (K ′) is nontrivial, then its
center is trivial.

Proof. If W+
K (K ′) is nontrivial, then it contains some nontrivial element a

k′i
i . Up to

permuting the ai (using Proposition 2.11), we can assume that a
k′1
1 is nontrivial.

Now, the center of W+
K (K ′) is included in the centralizer of a

k′1
1 in W+

K , which is

equal to ⟨a1⟩ by Proposition 2.10. Assume that Z(W+
K (K ′)) contains a nontrivial

element z. We have z = ani for some integer n. Any x ∈ W+
K (K ′) lies in the

centralizer of z in W+
K , and thus x ∈ ⟨ai⟩. We then have W+

K (K ′) ⊂ ⟨ai⟩.
Now, as during the proof of Proposition 2.12, the group W+

K is a discrete isometry
group for X either a euclidean or hyperbolic plane. Moreover, a fundamental domain
for the action of W+

K on X is a convex polygon P .
The groupWK is generated by the re�ections along the sides of P , and the elements

a1, . . . , ad are rotations around the vertices of P . Let v1 (resp. v2) be the vertex
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of P which is a center for the rotation a1 (resp. a2). The element a
k′1
1 is also a

rotation centered at v1. Since v1 ̸= v2, the point v1 is not a �xed point of a2, and

thus a2a
k′1
1 a−1

2 is a rotation around a point di�erent from v1. In particular, a2a
k′1
1 a−1

2

is not a power of a1. Since a2a
k′1
1 a−1

2 ∈ W+
K (K ′), this is a contradiction. □

3. Generalized J-groups

The family of J-groups was �rst de�ned in [1], where the authors proved in partic-
ular that the �nite groups in this family are precisely the complex re�ection groups
of rank 2. In this section, we give a generalization of the de�nition of J-groups and
we prove some group-theoretic results in this new setting.
For the remainder of the section, �x a positive integer p, along with a p-tuple

K = (k1, . . . , kp) in (N⩾2 ∪ {∞})p. We also �x another tuple K ′ = (k′1, . . . , k
′
p) in

(N⩾1)
p such that k′i divides ki for each i (by convention, we say that every nonzero

integer divides ∞).

3.1. De�nition, re�ections.

De�nition 3.1 (Generalized J-groups). The group J(K) is de�ned by the group
presentation¨

s1, . . . , sp | s1s2 · · · sp = s2 · · · sps1 = · · · = sps1 · · · sp−1, s
ki
i = 1 if ki < ∞

∂
.

It is called a generalized parent J-group.

The generalized J-group J
(K
K′
)
is de�ned as the normal closure of {sk

′
1

1 , . . . , s
k′p
p } in

J(K).

By extension, we will often consider groups of the form J(K) with elements of
K possibly equal to 1. Considering the above presentation, this is equivalent to
considering J(K̂), where K̂ is obtained from K by removing the entries equal to 1.
Since k′i divides ki for all i, we have a natural surjective morphism J(K) → J(K ′).

The kernel of this morphism is precisely the generalized J-group J
(K
K′
)
.

Remark 3.2 (The case k′i = ∞). The de�nition of generalized J-group also makes
sense if we allow K ′ to contain in�nity elements. Assume for instance that k′p =
kp = ∞, and let z := s1 · · · sp. By looking at the presentation of J(K), we can
show that J(K) decomposes as a direct product ⟨s1, . . . , sp−1⟩ × ⟨z⟩. Moreover, the

group ⟨s1, . . . , sp−1⟩ is a free product of the cyclic groups ⟨si⟩. The group J
(K
K′
)
is

then the normal closure of s
k′1
1 , . . . , s

k′p−1

p−1 in ⟨s1, . . . , sp−1⟩. We obtain that J
(K
K′
)
is

also a (possibly in�nitely generated) free product of cyclic groups. We chose not
to consider this case here, since on the one hand free products of cyclic groups are
well-studied, and on the other hand it would require to specify particular cases for
several theorems below.

Just as in the case of J-groups, we have a natural notion of abstract re�ections in
generalized J-groups. This de�nition imitates the de�nition originally given in [12]
in the case of toric re�ection groups, which are particular (classical) J-groups.

De�nition 3.3 (Re�ections). The set of re�ections of the generalized parent J-
group J(K) is de�ned as the set of all conjugates of nontrivial powers of s1, . . . , sp
in J(K). It is denoted by R(J(K)).

The set of re�ections of the generalized J-group J
(K
K′
)
is de�ned as the set of all

conjugates of nontrivial powers of s
k′1
1 , . . . , s

k′p
p in J(K). It is denoted by R(J

(K
K′
)
).

Notice that R(J
(K
K′
)
) is not the set of conjugates of the s

k′i
i in J

(K
K′
)
, but rather in

the generalized parent J-group J(K). In particular, while computing the conjugacy
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classes of re�ections in a generalized parent J-group is rather easy, it is more di�cult
in an arbitrary generalized J-group (see Proposition 3.18).
Another reasonable de�nition for the set of re�ections of a generalized J-group

would be the intersection with said J-group of the set of re�ections of its parent gen-
eralized J-group. The following two lemmas show that the two de�nitions coincide.

Lemma 3.4. Let i ∈ [[1, p]], and let n ∈ N. The re�ection sni belongs to J
(K
K′
)
if and

only if n is a multiple of k′i.

Proof. The if part is immediate by de�nition of J
(K
K′
)
. Conversely, let si be the image

of si in J(K ′). Since J
(K
K′
)
is the kernel of the projection map J(K) → J(K ′), we

have sni ∈ J
(K
K′
)
if and only if si

n is trivial. It is then su�cient to show that the
order of si is k

′
i. By construction, we know that this order divides k′i. Conversely, we

can compute the abelianization of J(K ′) using its de�ning presentation. We obtain
that this abelianization is a direct product of p cyclic groups Z/k′iZ. In particular,
the order of the image of si in this abelianization in k′i, whence the order of si is
precisely k′i, which �nishes the proof. □

Lemma 3.5. We have R(J
(K
K′
)
) = R(J(K)) ∩ J

(K
K′
)
.

Proof. Since re�ections in J
(K
K′
)
are in particular re�ections in J(K), we have the

direct inclusion. Conversely, let r ∈ R(J(K)) be a re�ection which belongs to J
(K
K′
)
.

By de�nition, there is an element g ∈ J(K) which conjugates r to some nontrivial

re�ection smi of J(K). Since J
(K
K′
)
is normal in J(K), we have smi ∈ J

(K
K′
)
. By

Lemma 3.4, we have smi ∈ R(J
(K
K′
)
) and thus r ∈ R(J

(K
K′
)
) as we wanted to show. □

Since a generalized J-group is de�ned as the normal closure of a set of re�ections
in its generalized parent J-group, it is generated by re�ections. However, it is not
obvious at this stage that it can be generated by a �nite number of re�ections. In
fact this will only be true for a particular family of generalized J-groups which is
introduced below (De�nition 3.10).
We now naturally extend the notion of re�ection (iso)morphisms introduced in

[12]:

De�nition 3.6 (Re�ection isomorphism). Let J1, J2 be two generalized J-

groups. A group morphism J1
φ−→ J2 is a re�ection morphism if φ(R(J1)) ⊂ R(J2)∪

{1J2}. Moreover, the groups J1 and J2 are said to be re�ection isomorphic if there
exists a group isomorphism J1 → J2 which restricts to a bijection between R(J1)
and R(J2). In this case, we write

H1
∼=Ref H2.

An important fact is that the ordering of the tuples K and K ′ does not impact
the re�ection isomorphism type of the generalized J-group J

(K
K′
)
:

Proposition 3.7 (Permutation of parameters). Let σ ∈ Sp and write σ(K) =

(kσ(1), kσ(2), . . . , kσ(p)) (and similarly for σ(K ′)). The groups J
(K
K′
)
and J

(σ(K)
σ(K′)

)
are

re�ection isomorphic.

Proof. Since generalized J-groups are normal closures in generalized parent J-groups,
it is enough to prove the result for generalized parent J-groups.
If p = 1, there is nothing to show. If p = 2, the result is obtained by considering the
automorphism swapping s1 and s2.
We assume from now on that p ⩾ 3. Since Sp is generated by the transposition
s := (1 2) and the cycle c := (1 2 · · · p), it is enough to show the result for these two
permutations. Writing t1, . . . , tp for the generators of J(K), we obtain a well-de�ned
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morphism from J(K) to J(s(K)) by setting

si 7→


t−1
2 if i = 1,

t−1
1 if i = 2,

(t3 · · · ti−1)t
−1
i (t3 · · · ti−1)

−1 if i ∈ [[3, p]].

Exchanging the roles of si and ti yields a morphism from J(s(K)) to J(s2(K)) =
J(K), which is the inverse of the �rst morphism. Moreover, α(s1) is conjugate to
t−1
2 , α(s2) is conjugate to t−1

1 and α(si) is conjugate to t−1
i for i ∈ [[3, p]], so that α

is a re�ection isomorphism.
Now, by de�nition of J(c(K)), a re�ection isomorphism γ : J(K) → J(c(K))

is obtained by sending s1 to ti+1 for i ∈ [[1, p − 1]] and by sending sp to t1. This
concludes the proof. □

3.2. Determination of �nite generalized J-groups. One of the main results of
[1] is the determination of �nite J-groups. More speci�cally, the authors show that
the family of �nite J-groups coincide with the family of complex re�ection groups of
rank 2. In this section, we generalize this result to arbitrary generalized J-groups.
If p ⩽ 2, then J(K) is �nite if and only if the elements of K are all �nite. In

particular, since the elements of K ′ are �nite, the group J(K ′) is �nite and J
(K
K′
)

has �nite index in J(K). In particular, J
(K
K′
)
is �nite if and only if its generalized

parent J-group is also �nite.
Obtaining a similar result in the case p ⩾ 3 is possible but more intricate. Just

as J-re�ection groups are related to triangle Coxeter groups (see for instance [14,
Theorem 1.5]), generalized J-groups are related to polygonal Coxeter groups. More
precisely, we have the following result:

Proposition 3.8 (Center of parent generalized J-groups). Assume p ⩾ 3.
The center of J(K) is generated by the product s1s2 · · · sp. Moreover, the quotient
J(K)/Z(J(K)) is isomorphic to the alternating polygonal Coxeter group W+

K .

Proof. First, s1s2 · · · sp is central in J(K) (it is invariant by conjugation by any of
the si's). Using Corollary 2.4, the correspondence si 7→ ai for i ∈ [[1, p]] induces an
isomorphism between J(K)/⟨s1 · · · sp⟩ and W+

K . Since the latter group has trivial
center by Corollary 2.5. We deduce that Z(J(K)) ⊂ ⟨s1s2 · · · sp⟩ ⊂ Z(J(K)), which
concludes the proof. □

This result allows us to determine which generalized parent J-groups are �nite,
by relating them to alternating polygonal Coxeter groups.

Lemma 3.9. Assume p ⩾ 3. The group J(K) is �nite if and only if W+
K is �nite.

This is equivalent to having (up to permutation) K = (2, 2, l) for l ⩾ 2 or K ∈
{(2, 3, 3), (2, 3, 4), (2, 3, 5)}.

Proof. By Corollary 2.4, there is a natural quotient J(K) → W+
K sending si to ai.

Therefore, if W+
K is in�nite, then so is J(K). As said in Remark 2.2, the group

WK (hence W+
K ) is �nite if and only if K belongs up to permutation to the set

{(2, 2, l), (2, 3, 3), (2, 3, 4), (2, 3, 5)} (with l ⩾ 2. The corresponding groups J(K) are
known to be �nite [1, Theorem 1.2], this �nishes the proof. □

In order to obtain a complete description of �nite generalized J-groups, we intro-
duce the de�nition of �nite-type generalized J-group.

De�nition 3.10 (Finite-type). A nontrivial generalized J-group J
(K
K′
)
is said to

have �nite type if the group J(K ′) is �nite. Otherwise, it is said to have in�nite type.

The main interest of this de�nition is that it coincides with the family of �nitely
generated generalized J-groups:



14

Proposition 3.11. A nontrivial generalized J-group is �nitely generated if and only
if it has �nite-type. Moreover, a �nite-type generalized J-group is �nitely presented.

Proof. Let J
(K
K′
)
be a generalized J-group. If J

(K
K′
)
has �nite index in J(K), then

it is �nitely presented since J(K) is �nitely presented (this is a consequence of the
Reidemeister Schreier method).

Conversely, assume that J
(K
K′
)
has in�nite type. If p ⩽ 2, then since the elements

of K ′ are all �nite, the group J(K ′) is always �nite and J
(K
K′
)
has �nite-type. We

can then assume that p ⩾ 3.
Consider the morphism J(K) → W+

K given by Proposition 3.8. The image of

J
(K
K′
)
under this morphism is the group W+

K (K ′). If K ′ contains 2 or less entries

di�erent from 1, then J(K ′) is a �nite abelian group and J
(K
K′
)
has �nite type. We

can then assume that K ′ contains at least three entries di�erent from 1, and we can
apply Lemma 3.9. We obtain that the group J(K)/J

(K
K′
)
≃ J(K ′) is �nite if and

only if the group W+
K/W+

K (K ′) ≃ W+
K′ is �nite. Thus J

(K
K′
)
has �nite index in J(K)

if and only if W+
K (K ′) has �nite index in W+

K .

If J
(K
K′
)
is nontrivial and has in�nite index in J(K), then W+

K (K ′) is nontrivial

and has in�nite index in W+
K . The group W+

K (K ′) is thus in�nitely generated by

Proposition 2.12. Since J
(K
K′
)
surjects onto W+

K (K ′), we have the result. □

Remark 3.12. Notice that the above proposition fails if we allow the elements of
K ′ to be in�nite. For instance, the group J

(∞ ∞
1 ∞

)
is isomorphic to Z but has in�nite

index in its parent generalized J-group Z2.

Remark 3.13. The above proposition applies in particular to the case p = 3. It
answers [16, Question 1.1.2] about �nite generatedness of (classical) J-groups. How-
ever, even if we showed that a �nite-type generalized J-group is �nitely generated,
we have not yet showed that it can be generated by a �nite number of re�ections.
This will be seen in Section 5, where we realize all �nite-type generalized J-groups
as torsion quotients of J-braid groups (see Remark 5.3)

Corollary 3.14 (Finite generalized J-groups). A nontrivial generalized J-group
is �nite if and only if its generalized parent J-group is �nite.

Proof. If the generalized parent J-group of a generalized J-group is �nite, then the
generalized J-group is �nite as a subgroup of its generalized parent J-group.
Conversely, assume that J

(K
K′
)
is a nontrivial �nite generalized J-group. In par-

ticular, J
(K
K′
)
is �nitely generated. By Proposition 3.11, the index of J

(K
K′
)
in its

generalized parent J-group is �nite. Since J
(K
K′
)
is �nite, this implies that its gener-

alized parent J-group is also �nite. □

Combining this corollary with Lemma 3.9, we obtain a complete classi�cation of
�nite generalized J-groups.

Corollary 3.15. A nontrivial generalized J-group is �nite if and only if it is re�ec-
tion isomorphic to a complex re�ection group of rank two. Conversely, every complex
re�ection group of rank 2 is realized as a �nite generalized J-group.

Proof. Using Corollary 3.14 and Lemma 3.9, the generalized J-group J
(K
K′
)
can only

be �nite if p ⩽ 3. If p ⩽ 2, the �nite generalized J-groups are direct product of
�nite cyclic groups, which are (reducible) rank two complex re�ection groups. If
p = 3, then we know that the parent J-group J(K) is a complex re�ection group
(see [1, Theorem 1.2] or simply [3, Tables 1-3]). The considered J-group is then a
complex re�ection group as the normal closure in a �nite re�ection group of a set of
re�ections. The converse statement that every complex re�ection group of rank 2 is
realized as a �nite J-group is shown in [1, Theorem 1.2]. □
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3.3. Conjugacy of re�ections. We now study the conjugacy of re�ections in gen-
eralized J-groups. First, using the description of centralizers obtained in alternating
polygonal Coxeter groups, we can describe the centralizer of re�ections in parent
generalized J-groups.

Proposition 3.16 (Centralizer of a re�ection). Let i ∈ [[1, p]], and let n ∈ Z∗ be
such that ani is nontrivial. The centralizer of ani in J(K) is abelian and generated by
ai and Z(J(K)).

Proof. If J(K) is abelian, then J(K) = Z(J(K)) is the centralizer of any element
and the result is immediate. If p ⩾ 3 and J(K) is �nite, then W := J(K) is an
irreducible complex re�ection group of rank 2 and ai is a re�ection of W . The center
of J(K) is cyclic and generated by z := s1 · · · sp after Proposition 3.8. The group
H := ⟨ai, z⟩ is an abelian group with order ki|Z(W )|. Moreover, H is included in
the centralizer of ani , and it is su�cient to show that this centralizer has cardinality
ki|Z(W )|.
In the Shephard-Todd notation, we have either W = G(2l, 2, 2) for l ⩾ 2, of W ∈

{G7, G11, G19}. In each case, we have |W | = |Z(W )|2. If K ∈ (2, 3, 3), (2, 3, 4) or
(2, 3, 5), the result is obtained by computer (using for instance the CHEVIE package
of GAP3 [CHE]). If K = (l, 2, 2) for some l ⩾ 2, then J(K) ≃ G(2l, 2, 2). More
precisely, the identi�cation is given by

a1 7→
Å
e2iπ/l 0
0 1

ã
, a2 7→

Å
0 1
1 0

ã
, a3 7→

Å
0 eiπ/l

e−iπ/l 0

ã
.

The centralizers of these elements and their nontrivial powers are easily computed
using this representation, which gives the desired result.
Lastly, assume that p ⩾ 3 and that J(K) is in�nite. Let g ∈ CJ(K)(a

n
i ). writing

π : J(K) → W+
K to denote the canonical quotient, we then have π(g) ∈ CW+

K
(π(ai)

n).

Now, using Lemma 3.9, the group W+
K is in�nite since J(K) is as well, hence Propo-

sition 2.10 applies. This shows that π(g) ∈ ⟨π(ai)⟩. Since ker(π) = ⟨a1a2 · · · ap⟩, in
turn equal to Z(J(K)) by Proposition 3.8, we obtain that g ∈ ⟨ai, a1a2 · · · ap⟩. This
concludes the proof. □

Using this result, we can describe the conjugacy classes of re�ections in a general-
ized J-group. As usual, we begin with the case of generalized parent J-groups.

Lemma 3.17. Two re�ections r, r′ ∈ J(K) are conjugate in J(K) if and only if we
can write r = gsni g

−1 and r′ = hsni h
−1 with g, h ∈ J(K) and n ∈ [[1, ki − 1]].

Proof. By de�nition of R(J(K)), we can write r = gsni g
−1 and r′ = hsmj h−1 with

i, j ∈ [[1, p]] and n ∈ [[1, ki − 1]], m ∈ [[1, kj − 1]]. The two re�ections r and r′ are then
conjugate in J(K) if and only if the re�ections sni and smj are conjugate. If j = i

and m = n, then sni = smj and r, r′ are conjugate in J(K). Conversely if sni and

smj are conjugate, then their images in the abelianization A of J(K) are equal. By

De�nition 3.1, A decomposes as a direct product Z/k1Z× · · · ×Z/kiZ, generated by
the images of the si's. If the images of sni and smj are equal, we then obtain i = j

and m = n modulo ki. Since m,n ∈ [[1, ki]] by assumption, we have m = n as we
wanted to show. □

In particular, we see that a re�ection is never conjugate to any of its powers other
than itself. For linear re�ection groups this is easily shown by looking at eigenvalues,
but here we have the result without using a linear representation of generalized J-
groups.

Proposition 3.18 (Conjugacy classes of re�ections). Let Q denote the quotient
of J(K ′) by the image of Z(J(K)) under the projection J(K) → J(K ′).
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For i ∈ [[1, p]], let si denote the image of si in Q. Let n ∈ N be such that sni ∈ J
(K
K′
)

is nontrivial.

(a) For g, h ∈ J(K), the elements gsni g
−1 and hsni h

−1 are conjugate in J
(K
K′
)
if

and only if the images of g and h in Q lie in the same left ⟨si⟩-coset.
(b) There is a natural bijection between the set of conjugacy classes in J

(K
K′
)
of

re�ections conjugate to sni in J(K) and the left ⟨si⟩-cosets in Q.

Proof. Point (b) is a direct consequence of point (a), we thus only have to prove

the latter. Since J
(K
K′
)
is normal in J(K), it is su�cient to consider the case where

h = 1. Let r := sni .

By de�nition, r and grg−1 are conjugate in J
(K
K′
)
if and only if there is an element

of J
(K
K′
)
which conjugates r to grg−1. The set of elements of J(K) which conjugate r

to grg−1 is the left coset gCJ(K)(r). The intersection gCJ(K)(r)∩J
(K
K′
)
is nontrivial

if and only if there is some x ∈ CJ(K)(r) whose image in J(K ′) is equal to that of g.
By Proposition 3.16, the centralizer CJ(K)(r) is generated by r and Z(J(K)). Thus

r and grg−1 are conjugate in J
(K
K′
)
if and only if there is some m ∈ Z∗, z ∈ Z(J(K))

such that the images of g and of smi z in J(K ′) are equal. Taking the quotient by the

image of Z(J(K)) in J(K). We obtain that r and grg−1 are conjugate in J
(K
K′
)
if

and only if there is some m ∈ Z+ such that the image of g in Q in si
m. This is the

desired result. □

The fact that Proposition 3.18 gives a complete description of the conjugacy classes
of re�ections in J

(K
K′
)
comes from Lemma 3.17: if r, r′ ∈ R(J

(K
K′
)
) are conjugate in

J
(K
K′
)
, then they are in particular conjugate in J(K). By Lemma 3.17, this implies

that we are in the situation of Proposition 3.18.

Corollary 3.19 (Counting conjugacy classes of re�ections). Let Q denote the
quotient of J(K ′) by the image of Z(J(K)) under the projection J(K) → J(K ′). For
i ∈ [[1, p]], let si denote the image of si in Q.

(a) The group Q is �nite if and only if J
(K
K′
)
has �nite-type.

(b) In this case, the number of conjugacy classes of re�ections in J
(K
K′
)
is given

by

p∑
i=1

ki/k
′
i−1∑

j=1

[Q : ⟨si⟩].

Proof. (a) If J
(K
K′
)
has �nite-type, then Q is �nite as a quotient of the �nite group

J(K ′). Conversely, assume that J
(K
K′
)
has in�nite type. We can assume that p ⩾ 3,

since p ⩽ 2 forces J
(K
K′
)
to have �nite-type. Moreover, we can assume that K ′

contains 3 or more entries di�erent than 1, since J(K ′) is �nite and abelian if this is
not the case. The center of J(K) is then generated by s1 · · · sp by Proposition 3.8,

and the group Q is W+
K′ . We then conclude by Lemma 3.9 that if J

(K
K′
)
has in�nite

type, then J(K ′) and W+
K′ are in�nite.

(b) After Lemma 3.17, every re�ection in J
(K
K′
)
is conjugate in J(K) to exactly

one re�ection of the form sni for n ∈ [[1, ki − 1]]. Moreover, by Lemma 3.4, n must be

a multiple of k′i. The number of conjugacy classes of re�ections in J
(K
K′
)
which are

conjugate to sni is given by Proposition 3.18 (b). □

3.4. Center and torsion elements. As a consequence of the determination of
centralizers of re�ections, we can determine the center of arbitrary generalized J-
groups. This was already proven by the second author in [16, Theorem 2.2.29] for
the family of J-re�ection groups (which are particular (classical) J-group).
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Corollary 3.20 (Center of generalized J-groups). The center of J
(K
K′
)
is given

by Z(J
(K
K′
)
) = J

(K
K′
)
∩ Z(J(K)). Moreover, if J

(K
K′
)
is nontrivial, it is abelian if

and only if J(K) is also abelian.

Proof. If p ⩽ 2, then J(K) is abelian and the result is immediate. Moreover, if J(K)
is �nite, then we are in the well-known case of irreducible rank two complex re�ection
groups.
Assume thus that p ⩾ 3 and that J(K) is in�nite. Consider the natural morphism

J(K) → W+
K . This morphism restricts to a surjective morphism π : J

(K
K′
)

→
W+

K (K ′). Since W+
K (K ′) has trivial center by Corollary 2.13, the center of J

(K
K′
)
is

included in kerπ. Since the kernel of the morphism J(K) → W+
K is Z(J(K)), the

kernel kerπ is the intersection of J
(K
K′
)
with Z(J(K)). We then have Z(J(

(K
K′
)
)) ⊂

J
(K
K′
)
∩ Z(J(K)). The other inclusion is immediate.

Now, if J(K) is abelian, then J
(K
K′
)
is abelian as a subgroup of J(K). Conversely,

if J(K) is nonabelian, then p ⩾ 3 and Z(J(K)) is cyclic and generated by a1 · · · ap.
However, J

(K
K′
)
contains a nontrivial re�ection, which is noncentral by Proposition

3.18. We then have Z(J
(K
K′
)
) = Z(J(K))∩J

(K
K′
)
⊊ J

(K
K′
)
and J

(K
K′
)
is not abelian.

Moreover, if p ⩾ 3, the group J(K) is not abelian since its inner automorphism group
W+

K is non-trivial. This concludes the proof. □

By Corollary 3.14, �nite generalized J-groups have �nite-type. Thus a generalized
J-group is either �nite, or in�nite and �nite-type, or in�nite-type. Moreover, theses
cases are mutually exclusive. We will show that these cases can be recovered by only
considering the centers of generalized J-groups.
First, we show that �niteness of a generalized parent J-group can be characterized

by only considering its center. This result was originally showed by the second author
[16, Corollary 2.2.37] for the case p = 3.

Proposition 3.21 (Order of center of parent generalized J-groups).
A generalized parent J-group is �nite if and only if its center is �nite.

Proof. If p ⩽ 2, the group J(K) is abelian so that the result is trivial.
If p = 3, the statement is that of [16, Corollary 2.2.37].
Assume now that p ⩾ 4 (in which case J(K) is always in�nite), we have to show
that Z(J(K)) is in�nite. If L is a tuple of length p′ ⩾ 3 obtained from K by deleting
entries, then there is a natural quotient J(K) → J(L) which induces a quotient
Z(J(K)) → Z(J(L)). It is then su�cient to show that Z(J(L)) is in�nite.
Assume that p = 4. If K contains a subset L of cardinal 3 such that J(L) is in�nite,
then case p = 3 applies and Z(J(L)) is in�nite. All remaining cases for p = 4 are of
the form (2, 2, n,m) with n,m ⩾ 2. By [16, Theorem 2.2.10 and Remark 3.1.7], we
have J(2, 2, n,m) ∼= J

(
2 2n 2m
1 2 2

)
, in which case the result follows from [16, Corollary

2.2.37].
If p ⩾ 5, then K admits a subtuple L of length 4. The group J(L) is in�nite in this
case by Proposition 3.8, and Z(J(L)) is in�nite by the case p = 4. This concludes
the proof. □

Proposition 3.22 (Order of center of generalized J-groups).

Let J
(K
K′
)
be a generalized J-group.

• If J
(K
K′
)
is �nite, then its center is either a �nite cyclic group or a direct

product of two �nite cyclic groups.
• If J

(K
K′
)
is in�nite and �nite-type, then its center is in�nite cyclic.

• If J
(K
K′
)
is in�nite-type, then its center is trivial (and J

(K
K′
)
≃ W+

K (K ′)).

Proof. By Corollary 3.14, a generalized J-group is �nite if and only if its generalized
parent J-group is �nite. If this is the case, then we are in the well-known case of
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rank two complex re�ection groups. This covers the �rst case.
If J

(K
K′
)
is in�nite and �nite type, then J(K) is in�nite and J(K ′) is �nite. We

know by Corollary 3.20 that Z(J
(K
K′
)
) = J

(K
K′
)
∩ Z(J(K)) and by Proposition 3.21

that Z(J(K)) is in�nite cyclic. Thus, since J(K ′) is �nite, the group J
(K
K′
)
contains

at least one non-trivial element of Z(J(K)) (otherwise the quotient J(K)/J
(K
K′
) ∼=

J(K ′) would contain an element of in�nite order, namely the image of the generator
of Z(J(K)) ). This covers the second case.

If J
(K
K′
)
is in�nite-type, then J(K ′) is in�nite. The group J

(K
K′
)
cannot contain a

central element of J(K). Indeed, if it did, the image of the generator of Z(J(K))

in J(K)/J
(K
K′
) ∼= J(K ′) would have �nite order, which is false by Proposition 3.21.

This shows that Z(J
(K
K′
)
) = 1. We conclude in particular that if J(K ′) is in�nite,

the restriction of the quotient J(K) → W+
K to J

(K
K′
)
is injective. This concludes the

proof. □

We �nish this section by giving a complete description of the torsion elements in
a in�nite generalized J-group.

Corollary 3.23 (Torsion in generalized J-groups). The torsion elements of an
in�nite generalized J-group are precisely its �nite order re�ections.

Proof. Since J
(K
K′
)
∩R(J(K)) = R(J

(K
K′
)
), it is enough to show the result for J(K).

If p ⩽ 2, then J
(K
K′
)
is a direct product of cyclic group, which is in�nite if and only if

at least one of the factors is in�nite cyclic. The result is immediate in this case. Now,
assume that p ⩾ 3, and write π : J(K) → W+

K for the natural quotient. If x ∈ J(K)

is a torsion element, π(x) is a torsion element in W+
K . Moreover, by Proposition 3.21,

x is not central, thus π(x) is nontrivial. By Proposition 2.7, π(x) is conjugate to a
nontrivial power of some π(ai) with ki < ∞ for i ∈ [[1, d]]. Up to conjugating x we
can assume that π(x) = π(ai)

q for q < ki. We then have x = aqi (a1a2 · · · ap)r for
some integer r. By Proposition 3.21, the order of a1a2 · · · ap is in�nite, which forces
r = 0 since x is a torsion element. We obtain x = aqi , as we wanted to show. □

4. J-braid groups and torsion quotients

4.1. Reminders on J-braid groups. In [14], the second author studies a particular
family of (classical) J-groups called J-re�ection groups, which contains in particular
all �nite J-groups (i.e. all complex re�ection groups of rank 2). Later in [15], the
second author introduced a family of so-called J-braid group, naturally attached
J-re�ection groups. This construction generalizes the de�nition of braid group of
complex re�ection groups of rank 2. The de�nition of J-braid group given in [15] is
via a presentation by generators and relations involving two positive integers n,m.
In [15], the integers n,m were assumed to be coprime. This assumption was later
removed in [13], giving rise to generalized J-braid groups, attached to generalized J-
re�ection groups. For readability, we will call these groups J-braid groups if needed.
For the remainder of this section we �x n,m ∈ N⩾1 and we write m = qn+ r with

0 ⩽ q and 0 ⩽ r ⩽ n− 1. We also de�ne d = n ∧m.

De�nition 4.1 (J-braid groups).
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• The group B∗
∗(n,m) is de�ned by the following presentation:

(1) Generators : {x1, . . . , xn, y, z};
(2) Relations :

x1 · · ·xnyz = zx1 · · ·xny, (4.1a)

xi+1 · · ·xnyzδq−1x1 · · ·xi+r = xi · · ·xnyzδq−1x1 · · ·xi+r−1, ∀1 ⩽ i ⩽ n− r, (4.1b)

xi+1 · · ·xnyzδqx1 · · ·xi+r−n = xi · · ·xnyzδqx1 · · ·xi+r−n−1, ∀n− r + 1 ⩽ i ⩽ n,
(4.1c)

where indices are taken modulo n and where δ denotes x1 · · ·xny.
• The group B∗(n,m) is the quotient of B∗

∗(n,m) by the normal closure of y.
• The group B∗(n,m) is the quotient of B∗

∗(n,m) by the normal closure of z.
• The group B(n,m) is the quotient of B∗

∗(n,m) by the normal closure of {y, z}.

Remark 4.2. By de�nition, in the presentation of B(n,m), only relations of the
form (4.1b) and (4.1c) remain, and they state that the product xi · · ·xi+m (with
indices seen mod n) does not depend on i. In other words, the presentation given for
the group B(n,m) coincides with the presentation given in [11] of the circular group
denoted there by G(n,m). Circular groups then appear as particular examples of
J-braid groups.

This combinatorial de�nition of J-braid groups was justi�ed by the following the-
orem:

Theorem 4.3. [16, Theorem 2.2.10 and Remark 3.1.7] Let b, c ∈ N⩾1. The group
J
(
k bn cm
1 n m

)
is isomorphic to B∗

∗(n,m)/⟨⟨xk1, . . . , xkn, yb, zc⟩⟩.

In the following sections, we are going to consider all quotients of J-braid groups
obtained by adding torsion to the generators. For readability, it is convenient to
name the conjugates of the generators in a J-braid group. We follow the notation of
[13]:

De�nition 4.4 (Braid re�ections). We call braid re�ections the conjugates of the
generators of B∗

∗(n,m), B∗(n,m), B∗(n,m) and B(n,m).

Notice that we did not give a topological meaning to J-braid groups (yet). The
terminology of braid re�ections relies (for now) entirely on the analogy with the case
of J-braid groups which are complex braid groups. We thus chose to use the term
braid re�ections instead of braided re�ection.
By construction of J-braid groups, we have a commutative square of groups

B∗
∗(n,m) B∗(n,m)

B∗(n,m) B(n,m)

y=1

z=1z=1

y=1

(4.2)

Contrary to [15] and [13], we do not make the assumption that m ⩾ 2 (resp. n ⩾ 2)
in order to de�ne B∗(n,m) (resp. B∗(n,m)). In particular, the above square is
always de�ned, but we need to be precise on the results involving groups B∗(1,m)
and B∗(n, 1).
Presentation (4.1) reads

B∗
∗(1,m) = ⟨x, y, z | xyz = zxy, yz(xy)m−1x = xyz(xy)m−1⟩,

so that B∗(1,m) is isomorphic to Z2. Now, there exists an isomorphism between
B∗(1,m) and B∗(m, 1) which sends y to z (see Corollary 4.17), hence B∗(m, 1) is
again isomorphic to Z2. Notice that if 1 ∈ {n,m} we also have B(n,m) ∼= Z by [11,
Corollary 2.11].
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We mentioned above that circular groups are particular cases of J-braid groups.
In fact, the family of J-braid groups coincides (up to abstract group isomorphism)
with the family of circular groups:

Theorem 4.5 (Isomorphism type of J-braid groups). [16, Theorem 3.1.23 and
3.1.31]

• The group B∗
∗(n,m) is isomorphic to B(d+ 2, d+ 2).

• The group B∗(n,m) is isomorphic to B(d+ 1, (d+ 1)m′).
• The group B∗(n,m) is isomorphic to B((d+ 1)n′, d+ 1).

Note however that these various isomorphisms do not send braid re�ections to braid
re�ections in general.

Proof. The only cases which are not covered in [16, Theorem 3.1.23 and 3.1.31] are
the isomorphisms B∗(n, 1) ≃ B(2, 2) ≃ B∗(1,m), which we already showed above. □

Using this result, it is rather easy to determine the center of J-braid groups:

Corollary 4.6 (Center of J-braid groups). [16, Corollary 3.1.35]
Let m′ := m

d and n′ := n
d .

• The center of B∗
∗(n,m) is in�nite cyclic and generated by δm

′
zn

′
.

• The center of B∗(n,m) is in�nite cyclic and generated by δm
′
zn

′
, except for

B∗(1,m) ≃ Z2.

• The center of B∗(n,m) is in�nite cyclic and generated by δm
′
, except for

B∗(n, 1) ≃ Z2.

• The center of B(n,m) is in�nite cyclic and generated by δm
′
, except if n = 1

or m = 1 or n = m = 2, in which case B(n,m) is abelian.

Proof. The fourth case was obtained in [11, Corollary 2.11], thus it only remains to
observe the result for B∗(1,m) and for B∗(n, 1), which is immediate. □

Lemma 4.7 (Conjugacy classes of braid re�ections). The pairs of conjugate
generators of B∗

∗(n,m) (resp. B∗(n,m),B∗(n,m),B(n,m)) are exactly the pairs of
the form {xi, xi+kd} for k ∈ N (where we see the indices mod n).
In particular, a complete set of representatives of conjugacy classes of braid re�ections
is given by

• {x1, . . . , xd, y, z} for B∗
∗(n,m).

• {x1, . . . , xd, z} for B∗(n,m).
• {x1, . . . , xd, y} for B∗(n,m).
• {x1, . . . , xd} for B(n,m).

Proof. Consider the presentation of B∗
∗(n,m). For i ∈ [[1, n − r]], Equation (4.1b)

implies that xi is conjugate to xi+r by xi+1 · · ·xnyδq−1x1 · · ·xi+r−1. Similarly for
i ∈ [[n − r + 1, n]], Equation (4.1c) implies again that xi is conjugate to xi+r−n.
Seeing the indices mod n, we obtain that xi is conjugate to xi+r for all i ∈ [[1, n]].
Since the gcd of n and r is equal to that of n and m (i.e. to d), we obtain that xi+kd

is always conjugate to xi for i ∈ [[1, n]] and k ∈ N. Since this holds in B∗
∗(n,m), it

also holds in its quotients B∗(n,m),B∗(n,m) and B(n,m).
Conversely, the presentation of B∗

∗(n,m) induces a presentation of its abelianiza-
tion A. We obtain that A is generated by x̄1, . . . , x̄n, ȳ, z̄ with the only relations
being x̄i = ¯xi+r for i ∈ [[1, n− r]] and x̄i = ¯xi+r−n for i ∈ [[n− r + 1, n]]. The group
A is then free abelian generated by x̄1, . . . , x̄d, ȳ, z̄. Since two conjugate elements in
B∗
∗(n,m) must be identi�ed in A, we deduce that no two elements of {x1, . . . , xd, y, z}

are conjugate in B∗
∗(n,m), which �nishes the proof in this case. Similar computations

give the abelianization of B∗(n,m),B∗(n,m) and of B(n,m), which gives the result
in these cases. □
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4.2. Torsion quotients of J-braid groups. In this section we �x two positive
integers n,m, and we let d := n∧m denote the gcd of n and m. We also �x a d-tuple
K := (k1, . . . , kd) of elements in N⩾2∪{∞}, along with two elements b, c ∈ N⩾2∪{∞}.

De�nition 4.8 (Torsion quotient).

• The group B∗
∗(n,m;K, b, c), de�ned as the quotient of B∗

∗(n,m) by the normal

closure of {xk11 , . . . , xkdd , yb, zc} is called a torsion quotient of B∗
∗(n,m).

• The group B∗(n,m;K, c), de�ned as the quotient of B∗(n,m) by the normal

closure of {xk11 , . . . , xkdd , zc} is called a torsion quotient of B∗(n,m).
• The group B∗(n,m;K, b), de�ned as the quotient of B∗(n,m) by the normal

closure of {xk11 , . . . , xkdd , yb} is called a torsion quotient of B∗(n,m).
• The group B(n,m;K), de�ned as the quotient of B(n,m) by the normal

closure of {xk11 , . . . , xkdd } is called a torsion quotient of B(n,m).

By construction of torsion quotients, square (4.2) induces a square between torsion
quotients:

B∗
∗(n,m;K, b, c) B∗(n,m;K, c)

B∗(n,m;K, b) B(n,m;K)

y=1

z=1z=1

y=1

(4.3)

where we abusively denote by y and z the respective images of y and z in the torsion
quotients.
At �rst glance, we only imposed torsion relations on the �rst d generators xi of

the presentation of a J-braid group in order to de�ne torsion quotients. However,
by Lemma 4.7, two generators xi, xj of a J-braid group are conjugate if and only if
i and j are equivalent modulo d. In particular, the image of xd+i in the associated
torsion quotient has order ki for all i ∈ [[1, d]].
Conversely, for (k1, k2, . . . , kn) ∈ N⩾2 ∪ {∞}, the quotient of a J-braid group by

the relations xkii = 1 for all i ∈ [[1, n]] (along with yb = zc = 1 if needed) is easily
shown to be a torsion quotient in the sense of De�nition 4.8.

Remark 4.9. We could theoretically allow for b = 1 or c = 1 in the de�nition of
torsion quotient. In this case every torsion quotient could be described as a torsion
quotient of B∗

∗(n,m), with for instance B∗(n,m;K, c) = B∗
∗(n,m;K, 1, c).

Remark 4.10. Assume that d = 1. In this case, the tuple K is actually a single
element k. The presentation of B∗

∗(n,m; k, b, c) coincides with the presentation of the
J-re�ection group W c

b (k, bn, cm) given in [14, Theorem 2.29]. More generally, if K =
(k, . . . , k), then the presentation of B∗

∗(n,m;K, b, c) coincides with the presentation
of the generalized J-re�ection group W c

b (k, bn, cm). This also holds if b = 1 or if
c = 1. Torsion quotients of J-braid groups then generalize generalised J-re�ection
groups.

De�nition 4.11 (Re�ections). Let B be a J-braid group and let W be a torsion
quotient of B. The nontrivial powers of conjugates of the images in W of the braid
re�ections of B are called the re�ections of W . We denote the set of re�ections of W
by R(W ). We say that two torsion quotients W and W ′ are re�ection isomorphic if
there exists a group isomorphism φ : W → W ′ such that φ(R(W )) = R(W ′).

Remark 4.12. The description of the conjugacy classes given in Lemma 4.7 extends
to all torsion quotients of J-braid groups, as the proof carries out word by word.

4.3. Embedding results for torsion quotients of J-braid groups. In this sec-
tion we �x two positive integers n,m, and we let d := n∧m denote the gcd of n and
m. We write m = qn + r the euclidean division of m by n. We also �x a d-tuple
K := (k1, . . . , kd) of elements in N⩾2∪{∞}, along with two elements b, c ∈ N⩾2∪{∞}.
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Notation 4.13. We will write d · K for the dp-tuple (k1, . . . , kp, k1, k2 . . . , kp) ob-
tained by repeating K d-times. Moreover, for k ∈ N ∪ {∞}, d · k will denote the
d-tuple d · (k).

Our main tool for studying torsion quotients of J-braid groups is the following
theorem, which provides an embedding from B∗

∗(pn, pm; d · K, b, c) to J(K, bn, cm)
which maps re�ections to powers of re�ections.

Theorem 4.14 (Embedding of J-braid group). The correspondance
xl 7→ sjp+1sis

−j
p+1 for l ∈ [[1, pn]] and l = jp+ i, j ∈ [[0, n− 1]], i ∈ [[1, p]],

y 7→ snp+1,

z 7→ smp+2.

induces an injective morphism from B∗
∗(pn, pm, d · K, b, c) to J(K, bn, cm), whose

image is the normal closure of {s1, . . . , sp, snp+1, s
m
p+2} in J(K, bn, cm).

The proof of this theorem is rather intricate and we postpone it until the next
section. For the end of this section, we give some corollaries, either for torsion
quotients or for the groups B∗(n,m),B∗(n,m) and B(n,m).

Corollary 4.15 (Embedding of torsion quotients). Let φ be the embedding of
Theorem 4.14.

• The morphism φ induces an embedding B∗
∗(pn, pm; d·K, b, c) → J(K, bn, cm),

which exhibits B∗
∗(pn, pm; d ·K, b, c) as J

(
K bn cm
p·1 n m

)
.

• The morphism φ induces an embedding B∗(pn, pm; d · K, c) → J(K,n, cm),
which exhibits B∗(pn, pm; d ·K, c) as J

(
K n cm
p·1 n m

)
.

• The morphism φ induces an embedding B∗(pn, pm; d · K, b) → J(K, bn,m),
which exhibits B∗(pn, pm; d ·K, b) as J

(
K bn m
p·1 n m

)
.

• The morphism φ induces an embedding B(pn, pm; d ·K) → J(K,n,m), which
exhibits B(pn, pm; d ·K) as J

(
K n m
p·1 n m

)
.

In all these cases, the notions of re�ections for the quotient torsion of J-braid groups
on the one hand and for the generalized J-groups on the other hand coincide.

Proof. The �rst point is simply a rephrasing of the de�nitions. The other points
follow from considering the square of natural quotients

J(K, bn, cm) J(K,n, cm)

J(K, bn,m) J(K,n,m)

□

Corollary 4.16 (Permuting torsion coe�cients). Let σ ∈ Sd be a permutation,
and let σ(K) be the d-tuple (kσ(1), . . . , kσ(d)). We have

• B∗
∗(n,m;K, b, c) and B∗

∗(n,m;σ(K), b, c) are re�ection isomorphic.
• B∗(n,m;K, c) and B∗(n,m;σ(K), c) are re�ection isomorphic.
• B∗(n,m;K, b) and B∗(n,m;σ(K), b) are re�ection isomorphic.
• B(n,m;K) and B(n,m;σ(K)) are re�ection isomorphic.

Proof. This is a direct application of Proposition 3.7 (permutation of parameters),
since torsion quotients of J-braid groups are generalized J-groups by Corollary 4.15.

□

Corollary 4.17 (Swap of parameters in torsion quotients). The following
torsion quotients are re�ection isomorphic:

• B∗
∗(n,m;K, b, c) and B∗

∗(m,n;K, c, b)
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• B∗(n,m;K, c) and B∗(m,n;K, c).
• B(n,m;K) and B(m,n;K).

Proof. The argument is precisely the same as that of Corollary 4.16, using the re-
�ection isomorphism between J(K, bn′, cm′) and J(K, cm′, bn′) given by Proposition
3.7. □

Since we can take K = (∞, . . . ,∞), and b = c = ∞ if needed, Corollary 4.15
implies in turn the following result.

Corollary 4.18. Let φ : B∗
∗(pn, pm) → J((p+ 2) · ∞) be the embedding of Theorem

4.14.

(1) The morphism φ induces an embedding B∗(pn, pm) → J(p · ∞, n,∞).
(2) The morphism φ induces an embedding B∗(pn, pm) → J((p+ 1) · ∞,m).
(3) The morphism φ induces an embedding B(pn, pm) → J(p · ∞, n,m).

Moreover, for each of these morphisms, the image is a �nite index normal subgroup.

4.4. Proof of the embedding theorem. In this section we �x two positive integers
n,m, and we let d := n ∧m denote the gcd of n and m. We write m = qn + r the
euclidean division of m by n. We also �x a d-tuple K := (k1, . . . , kd) of elements in
N⩾2 ∪ {∞}, along with two elements b, c ∈ N⩾2 ∪ {∞}.
This section is devoted to the proof of Theorem 4.14. The core of the proof

is to compute a presentation of the normal closure of {s1, . . . , sp, snp+1, s
m
p+2} in

J(K, bn, cm) using the Reidemeister-Schreier method. The proof is separated in
several intermediate results, and the �rst reduction is made possible by the following
elementary group theoretic result.

Lemma 4.19. Let G be a group, and let H be a normal subgroup of G. Assume that
the natural map Z(G) → G/H is surjective. Then for every x ∈ H, the conjugacy
classes of x in H and in G coincide.

Proof. Let x ∈ H, and let ClH(x) (resp. ClG(x)) denote the conjugacy class of x in
H (resp. in G). Since H is a subgroup of G, it is immediate that ClH(x) ⊂ ClG(x).
Conversely, let gxg−1 ∈ ClG(x). By assumption, we can write g = zh with z ∈ Z(G)
and h ∈ H. We then have gxg−1 = hxh−1 ∈ ClH(x), which terminates the proof. □

Lemma 4.20. Let N be the normal closure of {s1, . . . , sp+1, s
m
p+2} in J(K, bn, cm).

The normal closures of {s1, . . . , sp, snp+1, s
m
p+2} in J(K, bn, cm) and in N are equal.

Proof. The element α := s1 · · · sp+2 of J(K, bn, cm) is central. Its image in the
quotient J(K, bn, cm)/N ≃ Z/mZ is 1, which is a generator. By Lemma 4.19, the
conjugacy classes of an element of N in N or in J(K, bn, cm) are equal.
Now, the normal closure of a �nite subset is generated by the union of the conju-

gacy classes of its elements. Since the union of the conjugacy classes of {s1, . . . , sp,
snp+1, s

m
p+2} in J(K, bn, cm) or in N are equal, this �nishes the proof. □

Using this lemma, we can �rst compute a presentation of the group N using the
Reidemeister-Schreier method, and then compute a presentation for the normal clo-
sure of {s1, . . . , sp, snp+1, s

m
p+2} in N , again using the Reidemeister-Schreier method.

Proposition 4.21. The correspondance®
xi 7→ si for i ∈ [[1, p+ 1]],

z 7→ smp+2.

induces an injective morphism from B∗((p+1), (p+1)m; (K, bn), c) to J(K, bn, cm),
whose image is the normal closure of {s1, . . . , sp+1, s

m
p+2} in J(K, bn, cm).
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Proof. To simplify the notations in this proof, we denote bn by kp+1. Let N denote
the normal closure of {s1, . . . , sp+1, s

m
p+2} in J(K, kp+1, cm). The quotient group

J(K, bn, cm)/N is isomorphic to Z/mZ and a Schreier transversal for N is given by

{sjp+2}j∈[[0,m−1]]. By the Reidemeister-Schreier algorithm, the group N admits the
following group presentation:

(1) Generators : {xi,j}(i,j)∈[[1,p+2]]×J0,m−1K;

(2) Relations :

xkii,j for all i such that ki < ∞ and 0 ⩽ j ⩽ m− 1, (4.4a)

xp+2,jxp+2,j+1 · · ·xp+2,j+cm−1 = 1 if c < ∞, (4.4b)

xp+2,j = 1 for all 0 ⩽ j ⩽ m− 2, (4.4c)

xi,jxi+1,j · · ·xp+2,jx1,j+1 . . . xi−1,j+1 = xi+1,jxi+2,j · · ·xp+2,jx1,j+1 · · ·xi,j+1 (∗),
(4.4d)

(∗) for all 1 ⩽ i < p+ 2, 0 ⩽ j ⩽ m− 1.

where the index i is taken modulo p + 2, and the index j is taken modulo m − 1.

Moreover, for all i ∈ [[1, p + 1]] j ∈ [[0,m − 1]], we have xi,j = sjp+2sis
−j
p+2, while

xp+2,m−1 = smp+2. Now, for j ∈ [[0,m − 2]], we have xp+2,j = 1 so that Equation
(4.4b) reads

xcp+2,m−1 = 1 if c < ∞ (4.5)

and Equation (4.4d) reads

xi,jxi+1,j · · ·xp+1,jx1,j+1 . . . xi−1,j+1 = xi+1,jxi+2,j · · ·xp+1,jx1,j+1 · · ·xi,j+1. (4.6)

For any l ∈ [[1,m(p + 1)]], there is a unique way to write l as j(p + 1) + i with
j ∈ [[0,m − 1]] and i ∈ [[1, p + 1]]. Using this, we relabel the generators by setting
yj(p+1)+i := xi,j i ∈ [[0,m − 1]] and i ∈ [[1, p + 1]]. We also set z := xp+2,m−1. The
group N then admits the presentation

(1) Generators : {y1, . . . , ym(p+1), z};
(2) Relations :

ykil = 1 if l = j(p+ 1) + i and ki < ∞, (4.7a)

zc = 1 if c < ∞, (4.7b)

yiyi+1 · · · yi+p = yi+1yi+2 · · · yi+p+1 for all 1 ⩽ i < (m− 1)(p+ 1) + 1, (4.7c)

y(m−1)(p+1)+i · · · ym(p+1)zy1 · · · yi−1 = y(m−1)(p+1)+i+1 · · · ym(p+1)zy1 · · · yi (∗).
(4.7d)

(∗) for all 1 ⩽ i < p+ 2

Rephrasing Equation (4.7c) yields that, for i ∈ [[1, (m− 1)(p+ 1)]], we have

yi+p+1 = y
yi+1···yi+p

i .

Since yi commutes with itself, we deduce that

yi+p+1 = y
yiyi+1···yi+p

i = y
y1···yp+1

i .

Let us de�ne δ := y1 · · · yp+1. By an immediate induction on the above formula, we
obtain that

∀j ∈ [[0,m− 1]], i ∈ [[1, p+ 1]], yj(p+1)+i = y
(δj)
i . (4.8)

Using this, we can delete the generators yl for l > p+1 from the presentations, along
with Equation (4.7c).
Now, for i ∈ [[1, p+ 1]], we have

y(m−1)(p+1)+i · · · ym(p+1) = (yi · · · yp+1)
(δm−1).



25

In particular, Equation (4.7d) is equivalent to

δ1−myi · · · yp+1δ
m−1zy1 · · · yi−1 = δ1−myi+1 · · · yp+1δ

m−1zy1 · · · yi.
By simplifying this equation by δ1−m, we obtain that

∀i ∈ [[1, p+ 1]], yi · · · yp+1δ
m−1zy1 · · · yi−1 = yi+1 · · · yp+1δ

m−1zy1 · · · yi. (4.9)

By an immediate induction, we obtain that

y1 · · · yp+1δ
m−1z = δm−1zy1 · · · yp+1 ⇔ zδ = δz

By adding the relation zδ = δz to our presentation of N , we can ask (4.9) to be
veri�ed only for i ∈ [[1, p]], and not for i ∈ [[1, p+ 1]].
We �nally obtained that the group N admits the following presentation

(1) Generators : {y1, . . . , yp+1, z};
(2) Relations :

ykii for all i such that ki < ∞ (4.10a)

zc = 1 if c < ∞, (4.10b)

y1 · · · yp+1z = zy1 · · · yp+1, (4.10c)

yiyi+1 · · · yp+1zδ
m−1y1 · · · yi−1 = yi+1 · · · yp+1zδ

m−1zy1 · · · yi for all 1 ⩽ i ⩽ p,
(4.10d)

where yi = xi,0 = si and where z = xp+2,m−1 = smp+2. As this presentation is

precisely the de�ning presentation of B∗((p + 1), (p + 1)m; (K, bn), c), we have the
desired result. □

Remark 4.22. Since B∗(p + 1, (p + 1)m, (K, bn), c) is generated by x1, . . . , xp+1

and z, the above proposition also proves that the subgroup ⟨s1 · · · , sp+1, s
m
p+2⟩ in

J(K, bn, cm) is normal.

Remark 4.23. By Theorem 4.5, the normal closure of {s1, . . . , sp+1, s
m
p+2} in J((p+

2) · ∞) is in turn isomorphic to J((p+ 2) · ∞).

Proof of Theorem 4.14. We aim to compute a presentation of the normal closure of
{s1, . . . , sp, snp+1, s

m
p+2} in J(K, bn, cm). By Lemma 4.20, it is su�cient to compute

a presentation of the normal closure of {s1, . . . , snp+1, s
m
p+2} in the subgroup N of

J(K, bn, cm) which is the normal closure of {s1, . . . , sp, sp+1, s
m
p+2}. By Proposition

4.21, we can identify N with B∗(p+1, (p+1)m; (K, bn), c). The euclidean division of
(p+1)m by p+1 is (p+1)m = (p+1)×m+0. The group B∗(p+1, (p+1)m; (K, bn), c)
is then de�ned by the following presentation:

(1) Generators : {x1, . . . , xp+1, z};
(2) Relations :

xkii = 1 if ki < ∞, (4.11a)

zc = 1 if c < ∞, (4.11b)

x1 · · ·xp+1z = zx1 · · ·xp+1, (4.11c)

xi+1 · · ·xp+1zδ
m−1x1 · · ·xi = xi · · ·xp+1zδ

m−1x1 · · ·xi−1, ∀1 ⩽ i ⩽ p+ 1, (4.11d)

where kp+1 denotes bn.
Under the identi�cation N ≃ B∗(p + 1, (p + 1)m; (K, bn), c), the normal clo-

sure we have to compute is the normal closure of {x1, . . . , xp, xnp+1, z} in B∗(p +

1, (p + 1)m; (K, bn), c). Let us denote by H this normal closure. We have B∗(p +

1, (p+1)m; (K, bn), c)/H ≃ Z/nZ and a Schreier transversal for H is {xjp+1}j∈[[0,n−1]].
By the Reidemeister-Schreier algorithm, the group H is generated by the elements
{xi,j}i∈[[1,p+1]],j∈[[0,n−1]] along with the elements {zj}j∈[[0,n−1]], where
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• xi,j = xjp+1xix
−j
p+1 for i < p+ 1,

• xp+1,j = 1 for j < n− 1,
• xp+1,n−1 = xnp+1,

• zj = xjp+1zx
−j
p+1.

In order for the relations of the presentation obtained by the Reidemeister-Schreier
method to be readable, we introduce some intermediate elements.

• We set y := xp+1,n−1.
• For j ∈ [[0, n − 1]], we set δj = x1,j · · ·xp,j and δ′j = x1,j · · ·xp+1,j . Notice

that δj = δ′j for j < n− 1, and that δ′n−1 = δn−1y.
• We set ∆ = δ0 · · · δn−1y. Notice that, taking indices modulo n and setting
Dj := δ′j+1 · · · δ′j+m−1, we have

Dj =


∆qδ0 · · · δr−2 if j = n− 1,

δj+1 · · · δn−1y∆
qδ0 · · · δr+j−n−1 if j ∈ [[n− r, n− 2]],

δj+1 · · · δn−1y∆
q−1δ0 · · · δr+j−1 if j ∈ [[0, n− r − 1]],

where m = qn+ r is the euclidean division of m by n.
• For i ∈ [[1, p+ 1]] and j ∈ [[0, n− 1]], we de�ne Pi,j as
xi,n−1 · · ·xp,n−1xp+1,n−1z0Dn−1x1,r−1 · · ·xi−1,r−1 if j = n− 1,

xi,j · · ·xp+1,jzj+1Djx1,r+j−n · · ·xi−1,r+j−n if j ∈ [[n− r, n− 2]],

xi,j · · ·xp+1,jzj+1Djx1,r+j · · ·xi−1,r+j if j ∈ [[0, n− r − 1]].

With these de�nitions, the relations for of H obtained via the Reidemeister-Schreier
method are

xkii,j = 1 if ki < ∞, ∀1 ⩽ i ⩽ p, 0 ⩽ j ⩽ n− 1 (4.12a)

yb = 1 if b < ∞, (4.12b)

zcj = 1 if c < ∞, ∀0 ⩽ j ⩽ n− 1 (4.12c)

δjzj+1 = zjδj , ∀1 ⩽ j ⩽ n− 2 (4.12d)

δn−1yz0 = zn−1δn−1y, (4.12e)

Pi+1,j = Pi,j , ∀1 ⩽ i ⩽ p, 0 ⩽ j ⩽ n− 1 (4.12f)

Equation (4.12d) implies that, for j ∈ [[1, n − 2]], we have zj+1 = z
δj
j = z

δ0···δj
0 .

Replacing zn−1 with z
δ0···δn−2

0 in Equation (4.12e) yields

δn−1yz0 = (δ0 · · · δn−2)
−1z0δ0 · · · δn−1y ⇔ ∆z0 = z0∆.

For any l ∈ [[1, pn]], there is a unique way to write l as jp + i with j ∈ [[0, n − 1]]
and i ∈ [[1, p]]. Using this, we relabel the generators xi,j as ajp+i for i ∈ [[1, p]] and
j ∈ [[0, n− 1]].
Using this relabel, we see that δj = ajp+1 · · · ajp+p. In particular ∆ = a1 · · · apny.

Moreover, we can rewrite the product Dj as follows.

Dj =


y∆qa1 · · · a(r−1)p if j = n− 1,

a(j+1)p+1 · · · apny∆qa1 · · · a(r+j−n)p if j ∈ [[n− r, n− 2]],

a(j+1)p+1 · · · apny∆q−1a1 · · · a(r+j)p if j ∈ [[0, n− r − 1]].

Notice that for j ∈ [[0, n− 2]], we have.

zj+1a(j+1)p+1 · · · apny = zj+1δj+1 · · · δn−1y

= δj+1 · · · δn−1yz0

= a(j+1)p+1 · · · apnyz0.
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Using these formulae, we can rewrite the product Pi,j as

Pi,j =


ap(n−1)+i · · · apnyz0∆qa1 · · · a(r−1)p+i−1 if j = n− 1,

ajp+i · · · apnyz0∆qa1 · · · a(r+j−n)p+i−1 if j ∈ [[n− r, n− 2]],

ajp+i · · · apnyz0∆q−1a1 · · · a(r+j)p+i−1 if j ∈ [[0, n− r − 1]].

We notice that the expressions of Pi,j for j = n − 1 and for j ∈ [[n − r, n − 2]] are
equal. We then have

Pi,j =

®
al · · · apnyz0∆qa1 · · · apr+l−pn−1 if j ∈ [[n− r, n− 1]], l = jp+ i,

al · · · apnyz0∆q−1a1 · · · apr+l−1 if j ∈ [[0, n− r − 1]], l = jp+ i.

Since i ∈ [[1, p]], we have j ∈ [[0, n− r − 1]] if and only if l = jp+ i ∈ [[1, pn− pr]].
Likewise, we have j ∈ [[n− r, n− 1]] if and only if l = jp+ i ∈ [[pn− pr + 1, pn]].
Finally, we can rewrite the relations of (4.12) to obtain the following presentation

of H.

(1) Generators : {a1, . . . , apn, y, z0};
(2) Relations :

akil = 1 if l = jp+ i and ki < ∞, (4.13a)

yb = 1 if b < ∞, (4.13b)

zc0 = 1 if c < ∞, (4.13c)

a1 · · · apny · · · z0 = z0a1 · · · apny, (4.13d)

al+1 · · · apnyz0∆qa1 · · · apr+l−pn = al · · · apnyz0∆qa1 · · · apr+l−pn−1 (∗) (4.13e)

(∗) for l ∈ [[pn− pr + 1, pn]],

al+1 · · · apnyz0∆q−1a1 · · · apr+l = al · · · apnyz0∆q−1a1 · · · apr+l−1 (∗∗) (4.13f)

(∗∗) for l ∈ [[1, pn− pr]].

where we have ajp+i = xi,j = xjp+1xix
−j
p+1, y = xnp+1 and z0 = z. Identifying

B∗(p+1, (p+1)m; (K, bn), c) with its image in J(K, bn, cm) using Proposition 4.21,

we identify ajp+i with sjp+1sis
−j
p+1, y with snp+1 and z with smp+2. As the above pre-

sentation is precisely the de�ning presentation of B∗
∗(pn, pm; d ·K, b, c), we have the

desired result. □

5. Generalized J-groups as torsion quotients of J-braid groups

In the last section, we saw with Corollary 4.15 (embedding of torsion quotients)
that torsion quotients of J-braid groups can be seen as (�nite-type) generalized J-
groups. It turns out that the converse is also true, and that the family of �nite type
generalized J-groups coincides with that of torsion quotients of J-braid groups.
For readability purposes, we extend the de�nition of re�ection isomorphism by

saying that a torsion quotient of J-braid group W and a generalized J-group Q can
be re�ection isomorphic if there is an isomorphism φ : W → Q such that φ(R(W )) =
R(Q). What we are going to show is that every �nite-type generalized J-group is
re�ection isomorphic to some torsion quotient of J-braid group. The proof is split
in several intermediate results and relies ultimately on a case-by-case approach.
For the remainder of the section, we �x an integer p, along with elements k1, . . . , kp,

a, b, c in N⩾2 ∪ {∞}.
We begin by giving a list of �nite-type generalized J-groups up to re�ection iso-

morphism.

Lemma 5.1. A generalized J-group has �nite-type if and only if it is re�ection
isomorphic to a generalized J-group of one of the following form:

• J
(
k1 ··· kp nb mc
1 ··· 1 n m

)
with n,m ⩾ 1,
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• J
(
k1 ··· kp 2a 2b lc
1 ··· 1 2 2 l

)
with l ⩾ 2,

• J
(
k1 ··· kp 2a 3b 3c
1 ··· 1 2 3 3

)
,

• J
(
k1 ··· kp 2a 3b 4c
1 ··· 1 2 3 4

)
,

• J
(
k1 ··· kp 2a 3b 5c
1 ··· 1 2 3 5

)
.

We will denote these families of groups by F (n,m), F (2, 2, l), F (2, 3, 3), F (2, 3, 4),
F (2, 3, 5) respectively..

Proof. By de�nition, a generalized J-group J
(K
K′
)
has �nite-type if and only if

J(K)/J
(K
K′
)
is �nite. This quotient is isomorphic to J(K ′), where K ′ denotes the

tuple consisting of coordinates of K ′ di�erent than 1. If K ′ has length 2, then J(K ′)
is a �nite abelian group since K ′ contains only �nite elements. If K ′ has length 3 or
more, then we obtain the result by Lemma 3.9. □

Now that these cases have been listed, we can give a precise statement

Theorem 5.2 (Generalized J-groups as torsion quotients). We have the fol-
lowing re�ection isomorphisms:

• J
(
k1 ··· kp nb mc
1 ··· 1 n m

) ∼=Ref B∗
∗(pn, pm, d · (k1, . . . , kp), b, c), where n,m ⩾ 1,

• J
(
k1 ··· kp 2a 2b lc
1 ··· 1 2 2 l

) ∼=Ref B(2(lp+ l+1), 2(lp+ l+1); (M, l ·a, l · b, 2 · c)), where
l ⩾ 2 and where M := 2l · (k1, . . . , kp),

• J
(
k1 ··· kp 2a 3b 3c
1 ··· 1 2 3 3

) ∼=Ref B(12p + 14, 12p + 14; (M, 4 · b, 4 · c, 6 · a)), where

M := 12 · (k1, . . . , kp).
• J

(
k1 ··· kp 2a 3b 4c
1 ··· 1 2 3 4

) ∼=Ref B(24p + 26, 24p + 26; (M, 12 · a, 8 · b, 6 · c)), where
M := 24 · (k1, . . . , kp).

• J
(
k1 ··· kp 2a 3b 5c
1 ··· 1 2 3 5

) ∼=Ref B(60p+ 62, 60p+ 62; (M, 30 · a, 20 · b, 12 · c)), where
M := 60 · (k1, . . . , kp).

In particular, any �nite-type generalized J-group is re�ection isomorphic to a torsion
quotient of J-braid group.

Remark 5.3. By construction, torsion quotients of J-braid groups are generated by
a �nite number of re�ections. Theorem 5.2 implies that any �nite-type generalized
J-group is generated by a �nite number of re�ections.

For the remainder of the section, we do a case-by-case study of the families de-
scribed in Lemma 5.1 to prove Theorem 5.2. Family F (n,m) has already been dealt
with in Corollary 4.15. We separate the other cases in two subsections.

5.1. The families F (2, 2, l), F (2, 3, 3) and F (2, 3, 4). In fact, Corollary 4.15 can
also help us deal with families F (2, 2, l), F (2, 3, 3) and F (2, 3, 4). We begin with an
elementary lemma:

Lemma 5.4. The correspondence
xi 7→ si for i ∈ [[1, p]],

y 7→ sp+1,

z 7→ sp+2,

induces a re�ection isomorphism B∗
∗(p, p;K, b, c) ∼=Ref B(p + 2, p + 2; (K, b, c)) ∼=Ref

J(K, b, c).



29

Proof. The euclidean division of p by itself reads p = 1 × p + 0. The de�ning
presentation of B∗

∗(p, p;K, b, c) is then

Generators : {x1, . . . , xp, y, z};
Relations :

xk11 = xk22 = . . . = x
kp
p = yb = zc = 1,

x1 · · ·xnyz = zx1 · · ·xny,
xi+1 · · ·xnyzx1 · · ·xi+r = xi · · ·xnyzx1 · · ·xi+r−1, ∀1 ⩽ i ⩽ n,

This is exactly the de�ning presentation of B(p+2, p+2; (K, b, c)) and of J(K, b, c).
□

We now prove a technical lemma, which we then apply to the families F (2, 2, l),
F (2, 3, 3) and F (2, 3, 4).

Lemma 5.5. Let k, d, n,m be positive integers. We have a re�ection isomorphism

J
(
k1 ··· kp ak bdn cdm
1 ··· 1 k dn dm

) ∼=Ref J
( d·(k1 ··· kp ak) bn cm

d·(1 ... 1 k) n m

)
Proof. Consider the group J1 := J(d · (k1, . . . , kp, ak), bn, cm), and let us denote its
generators by σ1, . . . , σd(p+1), τ, µ. Recall that every integer l ∈ [[1, (p + 1)d]] can be
written uniquely as l = j(p+1)+ i with j ∈ [[0, d− 1]] and i ∈ [[1, p+1]]. Using this,
we relabel σl as σi,j .
By Lemma 5.4, the correspondence

σi,j 7→ xj(p+1)+i for j ∈ [[0, d− 1]], i ∈ [[1, p+ 1]],

τ 7→ y,

µ 7→ z,

induces a re�ection isomorphism

J1 ∼=Ref W := B∗
∗(d(p+ 1), d(p+ 1); d · (k1, . . . , kp, ak), bn, cm).

Now, Theorem 4.14 (embedding of J-braid groups) gives an explicit re�ection iso-

morphism between W and the generalized J-group J2 := J
(
k1 ··· kp ak bdn cdm
1 ··· 1 1 d d

)
. Let

s1, . . . , sp+3 denote the generators of J(k1, . . . , kp, ak, bdn, cdm). Composing the two
above re�ection isomorphism we obtain that the correspondence

σi,j 7→ sjp+2sis
−j
p+2 for j ∈ [[0, d− 1]], i ∈ [[1, p+ 1]],

τ 7→ sdp+2,

µ 7→ sdp+3,

induces a re�ection isomorphism φ between J1 and J2.

Now, the generalized J-group J ′
1 := J

( d·(k1 ··· kp ak) bn cm
d·(1 ... 1 k) n m

)
is de�ned as the normal

closure in J1 of the set

X := {σi,j | j ∈ [[0, d− 1]], i ∈ [[1, p]]} ∪ {σk
p+1,j | j ∈ [[0, d− 1]]} ∪ {τn, µm}.

The image of J ′
1 under φ is the normal closure J ′

2 of φ(X) in J2.

Let ‹J2 denote the generalized parent J-group of J2. The quotient ‹J2/J2 is isomor-
phic to Z/dZ × Z/dZ, and is generated by the respective images of sp+2 and sp+3.

Moreover, the image of the center of ‹J2 in ‹J2/J2 is (1, 1). The quotient Q of ‹J2/J2
by this image is then a cyclic group of order d, generated by the image of sp+2. It is
also generated by the image of sp+3. Applying Proposition 3.18 (conjugacy classes
of re�ections), we obtain that

• For all i ∈ [[1, p+ 1]] and q ⩾ 1 the set Ci,q := {sjp+2(s
q
i )s

−j
p+2 | j ∈ [[0, d− 1]]}

is a complete set of representatives of the conjugacy classes in J2 of elements

conjugate to (si)
q in ‹J2.
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• For g ⩾ 1, an element of J2 which is conjugate to (sp+2)
q (resp. to (sp+3)

q))

in ‹J2 is also conjugate to (sp+2)
q (resp. to (sp+3)

q) in J2.

By de�nition of φ, we have

φ(X) = (

p⋃
i=1

Ci,1) ∪ Cp+1,k ∪ {sdnp+2, s
d
p+3m}

After what is said above, the normal closure of this set in J2 is the normal closure

of {s1, . . . , sp, skp+1, s
dn
p+2, s

dm
p+3} in ‹J2. Since ‹J2 = J(k1, . . . , kp, ak, bdn, cdm), the

re�ection isomorphism J1 ∼=Ref J2 restricts to a re�ection isomorphism

J
( d·(k1 ··· kp ak) bn cm

d·(1 ... 1 k) n m

) ∼=Ref J
(
k1 ··· kp ak bdn cdm
1 ··· 1 k dn dm

)
as we wanted to show. □

Lemma 5.6 (Family F (2, 2, l)). Let M := 2l · (k1, . . . , kp). We have a re�ection
isomorphism

J
(
k1 ··· kp 2a 2b lc
1 ··· 1 2 2 l

) ∼=Ref B∗
∗(2(p+ 1)l, 2(p+ 1)l; (M, l · a, l · b), c, c).

Moreover, the latter group is re�ection isomorphic to J(M, l ·a, l ·b, 2 ·c) and we have
the second statement in Theorem 5.2.

Proof. By Proposition 3.7 (permutation of parameters), we have a re�ection isomor-
phism

J
(
k1 ··· kp 2a 2b lc
1 ··· 1 2 2 l

) ∼=Ref J
(
k1 ··· kp lc 2a 2b
1 ··· 1 l 2 2

)
.

We can apply Lemma 5.5 with d = 2, n = m = 1 and k = l. Again by Proposition
3.7, we obtain re�ection isomorphisms

J
(
k1 ··· kp lc 2a 2b
1 ··· 1 l 2 2

) ∼=Ref J
( 2·(k1 ··· kp lc) a b

2·(1 ··· 1 l) 1 1

) ∼=Ref J
( 2·(k1 ··· kp) a b cl cl

2·(1 ··· 1) 1 1 l l

)
.

Using Theorem 4.14, this last group is in turn re�ection isomorphic to

B∗
∗(2l(p+ 1), 2l(p+ 1); l ·N, c, c).

where N = (2 · (k1, . . . , kp), a, b). Again by Proposition 3.7, this group is re�ection
isomorphic to

B∗
∗(2(p+ 1)l, 2(p+ 1)l; (M, l · a, l · b), c, c)

since (M, l · a, l · b) is equal to l · N up to permutation. The second statement is a
direct application of Lemma 5.4. □

Lemma 5.7 (Family F (2, 3, 3)). Let M := 12 · (k1, . . . , kp). We have a re�ection
isomorphism

J
(
k1 ··· kp 2a 3b 3c
1 ··· 1 2 3 3

) ∼=Ref B∗
∗(12(p+ 1), 12(p+ 1); (M, 4 · b, 4 · c, 4 · a), a, a).

Moreover, the latter group is re�ection isomorphic to J(M, 6 · a, 4 · b, 4 · c) we have
the third statement in Theorem 5.2.

Proof. We can apply Lemma 5.5 with d = 3, n = m = 1 and k = 2. Again by
Proposition 3.7, we obtain re�ection isomorphisms

J
(
k1 ··· kp 2a 3b 3c
1 ··· 1 2 3 3

) ∼=Ref J
( 3·(k1 ··· kp 2a) b c

3·(1 ··· 1 2) 1 1

) ∼=Ref J
( 3·(k1 ··· kp) b c 2a 2a 2a

3·(1 ··· 1) 1 1 2 2 2

)
.

Using Lemma 5.6, this last group is in turn re�ection isomorphic to

B∗
∗(4(3p+ 3), 4(3p+ 3); (N, 2.a, 2.a), a, a)

where N = 4 · (3 · (k1, . . . , kp), b, c). Again by Proposition 3.7, this group is re�ection
isomorphic to

B∗
∗(12(p+ 1), 12(p+ 1); (M, 4 · b, 4 · c, 4 · a), a, a)

since (M, 4 · b, 4 · c, 4 · a) is equal to (N, 2 · a, 2 · a) up to permutation. The second
statement is a direct application of Lemma 5.4. □
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Lemma 5.8 (Family F (2, 3, 4)). Let M := 24 · (k1, . . . , kp). We have a re�ection
isomorphism

J
(
k1 ··· kp 2a 3b 4c
1 ··· 1 2 3 4

) ∼=Ref B∗
∗(24(p+ 1), 24(p+ 1); (M, 12 · a, 8 · b, 4 · c), c, c).

Moreover, the latter group is re�ection isomorphic to J(M, 12 · a, 8 · b, 6 · c) we have
the fourth statement in Theorem 5.2.

Proof. Up to permutation, we have

J
(
k1 ··· kp 2a 3b 4c
1 ··· 1 2 3 4

) ∼=Ref J
(
k1 ··· kp 3b 2a 4c
1 ··· 1 3 2 4

)
We can apply Lemma 5.5 with d = 2, n = 1,m = 2 and k = 3. Again by Proposition
3.7, we obtain re�ection isomorphisms

J
(
k1 ··· kp 3b 2a 4c
1 ··· 1 3 2 4

) ∼=Ref J
( 2·(k1 ··· kp 3b) a 2c

2·(1 ··· 1 3) 1 2

) ∼=Ref J
( 2·(k1 ··· kp) a 2c 3b 3b

2·(1 ··· 1) 1 2 3 3

)
.

Using Lemma 5.8, this last group is in turn re�ection isomorphic to

B∗
∗(12(2p+ 2), 12(2p+ 2); (N, 8 · b, 4 · c), c, c)

where N = 12 · (2 · (k1, . . . , kp), a). Again by Proposition 3.7, this group is re�ection
isomorphic to

B∗
∗(24(p+ 1), 24(p+ 1); (M, 12 · a, 8 · b, 4 · c), c, c)

since (M, 12 · a, 8 · b, 4 · c) is equal to (N, 8 · b, 4 · c) up to permutation. The second
statement is a direct application of Lemma 5.4. □

5.2. The family F (2, 3, 5). At this stage, it remains to study the family F (2, 3, 5),
that is groups of the form

J
(
k1 ··· kp 2a 3b 5c
1 ··· 1 2 3 5

)
.

We cannot take advantage of Lemma 5.5 since 2, 3, 5 are pairwise coprime. We use
a more direct approach, which is both more intricate and computational.
We �rst deal with the case where every ki is in�nite. Let p ⩾ 0 be an integer.

Notation 5.9. Let d ⩾ 1 be an integer. Exceptionally in this section, we sometimes
write G(d) for the group J(d · ∞).

We consider the group G(p+ 3), and we label its generators by x1, . . . , xp, s, t, u.
We denote by Hp the normal closure of {x1, . . . , xp, s2, t3, u5} in G(p+ 3). We plan
to prove the following proposition

Proposition 5.10. The group Hp is re�ection isomorphic to J((60p+ 62) · ∞).

By de�nition, a presentation for the quotient G(p+ 3)/Hp is given by

⟨s, t, u | stu = tus = ust, s2 = t3 = u5 = 1⟩.
By [3, Table 2], this presentation is a presentation of the complex re�ection group
G19, with s, t, u as generating re�ections. The center of G19 is a cyclic group of order
60 generated by stu. We identify the quotient G(p+ 3)/Hp with G19 from now on.
The case of p = 0 can easily be dealt with by interpreting H0 as a fundamental

group.

Lemma 5.11. The group H0 is re�ection isomorphic to J(62 · ∞).

Proof. The quotient G(3)/H0 is isomorphic to G19, which admits 62 re�ecting hy-
perplanes (=lines) when acting on C2. Let us denote by X the complement in C2 of
these re�ecting hyperplanes.
By [3, Table 2], the de�ning presentation of G(3) is also a presentation of the braid

group B(G19), that is the fundamental group of X/W . Moreover, the generators
of this presentations are generators-of-the-monodromy, i.e. braided re�ections in
B(G19).
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The fundamental group of X is denoted by P (G19). It is the kernel of the projec-
tion map B(G19) → G19 and we have an isomorphism of short exact sequences

1 H0 G(3) G19 1

1 P (G19) B(G19) G19 1

≃ ≃

We claim that the isomorphism H0 ≃ P (G19) is the desired isomorphism.
Now, X is the complement of 62 lines in C2. By [20], the fundamental group of X

is isomorphic to J(62 ·∞), where the generators are generators-of-the-monodromy in
the sense of [3]. Moreover, by [3, Proposition A3], the generators of the monodromy
in P (G19) are (up to conjugacy) equal to s2, t3 or u5 in B(G19) ≃ G(3). This gives
the result. □

In order to complete the proof of Proposition 5.10 for p ⩾ 1, we �rst need a few
intermediate lemmas.

5.2.1. Group theoretic lemmas.

Lemma 5.12. Let p ⩾ 1 be an integer, and let G be a group isomorphic to G(p).
Assume that X = {x1, . . . , xp} is a subset of G such that

• The set X generates G,
• The product x1 · · ·xp generates Z(G).

Then a group presentation of G is given by

G = ⟨x1, . . . , xp | x1 · · ·xp = x2 · · ·xpx1 = . . . = xpx1 · · ·xp−1⟩.

Proof. Let z denote the product x1 · · ·xp. Since z is central in G, we have

x1 · · ·xp = x2 · · ·xpx1 = . . . = xpx1 · · ·xp−1

Let a1, . . . , ap be generators of the group G(p). The correspondence ai 7→ xi for
i ∈ [[1, p]] induces a well-de�ned morphism φ : G(p) → G, which is surjective since X
generates G. In order to conclude, it remains to show that φ is injective.
Since G is (abstractly) isomorphic to G(p), the quotient Ḡ := G/Z(G) is a free

group on p − 1 generators. Since the product a1 · · · ap generates Z(G(p)), and
since the product x1 · · ·xp generates Z(G), φ induces a surjective morphism φ̄ from
G(p)/Z(G(p)) to Ḡ. Now, since free groups of �nite rank are Hop�an, and since
G(p)/Z(G(p)) and Ḡ are both free groups on p − 1 generators, we obtain that φ̄ is
an isomorphism.
We then have Ker(φ) ⊂ Z(G(p)), which is a cyclic group generated by a1 · · · ap.

Since φ(a1 · · · ap) = z is nontrivial, and since G is torsion free, we �nally deduce that
φ is injective. □

The main purpose of Lemma 5.12 is to replace an abstract group isomorphism
G ≃ G(p) with an explicit isomorphism.

Lemma 5.13. Let G be a group and let H ⩽ G be a subgroup. Let X ⊂ G be a
subset which positively generates G, and let Y ⊂ H be an arbitrary generating set.
The group H is normal in G if and only if

∀x ∈ X, y ∈ Y, xyx−1 ∈ H

Proof. The only if part is immediate since xyx−1 is a conjugate of an element of H.
Conversely, let h ∈ H, and let x ∈ X. We can write h as a product of elements of Y .
The element xhx−1 is then a product of conjugates of elements of Y by X. Since all
these elements belong to H by assumption, we have xhx−1 ∈ H. Now, any element
g ∈ G can be written as a product x1 · · ·xn with xi ∈ X for i ∈ [[1, n]]. An immediate
induction then yields that ghg−1 belongs to H. □
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Lemma 5.14. The group Hp is abstractly isomorphic to J((60p+ 62) · ∞).

Proof. Let F denote the quotient G(p + 3)/Z(G(p + 3)), and let x1, . . . , xp, s, t, u
denote the respective images of x1, . . . , xp, s, t, u in F . The group F is a free group
generated by x1, . . . , xp, s, t.

Let Hp denote the image of Hp in F . By Corollary 3.20 (center of generalized

J-groups), we have Z(Hp) = Z(G(p+3))∩Hp, and thus Hp ≃ Hp/Z(Hp). We have
a morphism of short exact sequences

1 Hp G(p+ 3) G19 1

1 Hp F G19/Z(G19) 1

The group G19/Z(G19) is isomorphic to the alternating group A5. In particular,
Hp is a subgroup of index 60 in a free group on p+2 generators. By [18, Proposition

3.9], Hp is a free group on 60(p+ 1) + 1 = 60p+ 61 generators.
We have a short exact sequence

1 → Z(Hp) → Hp → Hp → 1

Which splits since Hp is free. We obtain that Hp decomposes as a direct product
of Z with a free group on 60p+ 61 generators, which �nishes the proof since such a
direct product is isomorphic to J((60p+ 62) · ∞). □

By combining Lemma 5.14 and Lemma 5.12, proving Proposition 5.10 amounts
to �nding a system of 60p + 62 generating re�ections of Hp whose product (in a
well-chosen ordering) generates the center of Hp. Note that, since the center of G19

is a cyclic group of order 60, the center of Hp is generated by (x1 · · ·xpstu)60.
In order to complete the proof, we distinguish the cases p = 1 and p > 1.

5.2.2. The case p = 1. This part of the proof is achieved through direct computations
using GAP4. Let us denote by x, s, t, u the generators of G(4).

• gxg−1 for g in

utu, ut, utsu, utsutu, utsutuu,
uttu, uu, uutu, uut, uutst,
uutstsu, uutsu, uutsutuxu, uutsutu, uuu,
1, st, stsu, stsutu, stsutuu,
stsutxstxst, stsut, su, sutuxu, sutu,
sut, sutst, sutstsu, sutstsuu, sutsu,
sutsutuxu, sutsutu, sutsut, sutsutsttu, suu,
suutstu, suutstuu, suutstxstxst, suutst, suuttu,
tu, t, tst, tsu, tsutuxu,
tsutu, tsut, tsutst, tsutstsu, tsutstsuu,
tsutsttuxxstxst, tsutsttu, tsutsu, tsutsutu, tsutsuttu,
tsuttuxuu, tsuttu, ttuxuu, ttu, tttu

Let us label these words by m1, . . . ,m60 with m1 = utu, m2 = ut and so on.
We write xi for mixm

−1
i .

• gs2g−1 for g in

u, utsts, utsu, utsutsu, utsut, uts,
uu, uutst, uutsus, uutsuts, uuts, uuus,
uuut, stsut, st, sus, sutsts, sutsus,
sutsut, suts, suus, suutst, suuts, 1,
tst, tsu, tsutsts, tsutsu, tsuts, t

Let us label these by s1 . . . s30.
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• gt3g−1 for g in

utst, ut, uutsts, uutsus, uutsu,
uut, sts, stsu, sus, sutsus,
sutsuts, sutsut, su, suutst, suu,
tsus, tsuts, tsutsut, tsut, 1

Let us label these by t1, . . . , t20
• gu5g−1 for g in

us, utsut, utsu, uutsts, 1, stsut,
stsu, sutsts, suutst, suuts, t, tsutsts

Let us label these by u1, . . . , u12
The group G(4) has a solution to the word problem (either considering that it is a

direct product of a free group with an in�nite cyclic group, or using Garside theory).
We can then check directly that the product

u1 s1 x1 x2 s2 t1 x3 s3 x4 x5 u2 s4 s5 u3 s6 x6 t2 x7 s7 x8

x9 x10 t3 x11 u4 s8 x12 t4 s9 x13 x14 s10 t5 s11 t6 x15 s12 s13 u5 x16

x17 t7 x18 x19 x20 u6 x21 x22 s14 t8 u7 s15 x23 t9 s16 x24 x25 x26 x27 x28

x29 u8 s17 x30 t10 s18 x31 x32 x33 x34 t11 s19 t12 s20 t13 x35 s21 x36 x37 u9

x38 x39 s22 t14 u10 s23 x40 t15 s24 x41 u11 x42 x43 s25 x44 t16 s26 x45 x46 x47

x48 x49 x50 u12 s27 x51 x52 t17 x53 s28 x54 x55 t18 s29 x56 x57 t19 s30 x58 x59

x60 t20 (5.2)

is equal to (xstu)60 in G(4). Since we have a system of 60 + 62 re�ections in H1

whose product generates Z(H1), it only remains to show that this system generates
H1:

Lemma 5.15. The group H1 is generated by

{x1, . . . , x60} ∪ {s1 . . . s30} ∪ {t1, . . . , t20} ∪ {u1, . . . , u12}
Proof. Let us denote by X our candidate generating set, and let H be the subgroup
of G(4) generated by X. Since X consists of conjugates of x, s2, t3, u5 in G(4), we
have H ⊂ H1. Moreover, we have shown that (xstu)60 lies in H. Since Z(H1) is
generated by (xstu)60, we have H = H1 if and only if the image of H in H1/Z(H1)
is equal to H1/Z(H1).
Now, since Z(H1) = Z(G(4)) ∩ H1, the group H1/Z(H1) is identi�ed with the

image of H1 in the quotient G(4)/Z(G(4)). Let F be a free group on three letters
χ, σ, τ . The correspondence 

x 7→ χ,

s 7→ σ,

t 7→ τ,

u 7→ (χστ)−1,

induces a group morphism G(4) → F , and an isomorphism G(4)/Z(G(4)) ≃ F .
Under this isomorphism, the image of H1 is identi�ed with the normal closure of
χ, σ2, τ3, (χστ)−5, while the image of H is identi�ed with the subgroup generated by
the image of X.
Since the image of H1 in F has �nite index, H1 is a �nitely generated free group.

And we can obtain a generating set by the Reidemeister-Schreier method. Moreover,
the equality problem is decidable for �nitely generated subgroups of free groups [18,
Proposition 2.21]. We use the implementation in GAP4 of both the Reidemeister-
Schreier method and of the equality problem for �nitely generated subgroups of free
group to conclude that the images of H and H1 in F are equal, which is su�cient to
conclude that H and H1 are equal. □
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5.2.3. The case p > 1. Our strategy here will be to embed a copy of H1 and G(4)
in Hp and G(p + 3) in order to use the results of the above section. Consider the
elements x := x1 · · ·xp, s, t, u and let K be the subgroup of G(p + 3) generated by
x, s, t, u.

Lemma 5.16. We have the group presentation K = ⟨x, s, t, u | xstu = stux =
tuxs = uxst⟩. In particular K ≃ G(4).

Proof. First, note that z := xstu generates the center of G(p + 3). In particular
we have Z(G(p + 3)) ⊂ G(4). Now, G(p + 3) decomposes as a direct product F ×
Z(G(p + 3)), where F is the subgroup generated by x1, . . . , xp, s, t (which is free).
Under this decomposition, K becomes the direct product ⟨x, s, t⟩ × ⟨z⟩. The group
⟨x, s, t⟩ is free on x, s, t, and thus a presentation of K is given by

K = ⟨x, s, t, z | xz = zx, sz = zs, tz = zt⟩.
Knowing that u = (xst)−1z, we obtain the desired presentation. □

Using this lemma, we identify the groupK with G(4) from now on. The restriction
of the projection map G(p + 3) → G19 to K is surjective since G19 is generated by
the images of s, t, u. The kernel of this restriction is equal to Hp ∩K. We can then
also identify Hp ∩K with H1.
Let us consider the sixty words m1, . . . ,m60 introduced in Section 5.2.2, along

with the set

S := {s1, . . . , s30} ∪ {t1, . . . , t20} ∪ {u1, . . . , u12}.
By Lemma 5.15, we know that H1 is generated by S, along with the mixm

−1
i for

i ∈ [[1, 60]]. By replacing each occurrence of xi in the product (5.2) with the product
mix1m

−1
i · · ·mixpm

−1
i , we obtain a decomposition of (x1 · · ·xpstu)60 as a product

of 60p + 62 re�ections of Hp. In order to complete the proof of Proposition 5.10 in
this case, it remains to show that Hp is generated by S, along with the elements

xi,j = mjxim
−1
j for i ∈ [[1, p]], j ∈ [[1, 60]].

Proposition 5.17. The group Hp is generated by

{xi,j | i ∈ [[1, p]], j ∈ [[1, 60]]} ∪ S

Proof. Let us denote by X our candidate generating set, and let H be the subgroup
of G(p + 3) generated by X. Since X consists of conjugates of the xi's, along with
conjugates of s2, t3, u5 in G(p + 3), we have H ⊂ Hp. It is then su�cient to show
that H is normal in G(p+ 3).
Let z := x1 · · ·xpstu. The group G(p + 3) is positively generated by the set

A := {z, z−1, x1, . . . , xp, s, t, u} (this is a standard Garside theoretic fact, see for
instance [10, Proposition I.2.4]). By Lemma 5.13, it is su�cient to show that any
conjugate of an element of X by an element of A lies in H. This is of course
true when conjugating by z or z−1. Moreover, since m16 is the trivial word, we
have x1, . . . , xp ∈ H. In particular, conjugating by x1, . . . , xp also leaves H globally
invariant. It remains to show that any conjugate of an element of X by an element
of {s, t, u} lies in H.
Now, let r ∈ {s, t, u} and g ∈ S. The element rgr−1 lies in Hp∩G(4) = H1. Since

the generating set of H1 given in Lemma 5.15 is included in H, we have H1 ⊂ H and
thus rgr−1 ∈ H. It remains to consider the conjugates of the generators xi,j by an
element of {s, t, u}.
Note that the word m1, . . . ,m60 form a complete system of representative of the

quotient G19/Z(G19). Let j ∈ [[1, 60]], and let r ∈ {s, t, u}. The image in G19/Z(G19)
of rmj is represented by some word mk. By Proposition 3.18 (conjugacy classes of

re�ections), the elements rmjxm
−1
j r−1 and mkxm

−1
k are then conjugate in H1, say

by an element h. In particular, the elements rmj and hmk are equal modulo the
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centralizer of x in G(4). By Proposition 3.16 (centralizer of a re�ection), we then
have rmj = hmkx

n(xstu)m in G(4) for some n,m ∈ Z. This implies that

rxi,jr
−1 = (rmj)xi(rmj)

−1

= (hmkx
n)xi(hmkx

n)−1

= (hmkx
nm−1

k )xi,k(hmkx
nm−1

k )−1

= (h(x1,k · · ·xp,k)n)xi,k(h(x1,k · · ·xp,k)n)−1

Lastly, since h ∈ H1 ⊂ H, the element (h(x1,k · · ·xp,k)n) lies in H, and thus rxi,jr
−1

also lies in H, which �nishes the proof. □

5.2.4. The general case. We can now prove that a generalized J-group in the family
F (2, 3, 5) is a torsion quotient of J-braid group:

Proposition 5.18 (Family F (2, 3, 5)). Let M := 60 · (k1, . . . , kp). We have a
re�ection isomorphism

J
(
k1 ··· kp 2a 3b 5c
1 ··· 1 2 3 5

) ∼=Ref J(M, 30 · a, 20 · b, 12 · c).

Moreover, we have the last statement in Theorem 5.2.

Proof. Let J̃ := J((p+ 3) · ∞), and let J be the normal closure in J̃ of {x1, . . . , xp,
s2, t3, u5}.
We consider the generating set of J given in Proposition 5.17 (which is also a

generating set when p ∈ {0, 1}). Let Q := G19/Z(G19). Notice that Q is the

quotient of J(2, 3, 5) by the image of the center of J̃ .
Consider the wordsm1, . . . ,m60 introduced in Section 5.2.2. They form a complete

set of representatives of Q. Let i ∈ [[1, p]]. Since the image of xi is trivial in Q,

Proposition 3.18 implies that an element of J is conjugate to xkii in J̃ if and only if it

is conjugate in J to some mj(x
ki
i )m−1

j . The normal closure of xkii in J̃ is then equal

to the normal closure of {xkii,j , j ∈ [[1, 60]]} in J .

Similarly, the word introduced in Section 5.2.2 de�ning s1, . . . , s30 (resp. t1, . . . , t20,
u1, . . . , u12) form a complete set of representatives of the cosets in Q relative to the
image of s (resp. of t, of u). Again by Proposition 3.18, the normal closure of s2a

(resp. of t3b, u5c) in J̃ is the normal closure of {sa1, . . . , sa30} (resp. of {tb1, . . . , tb20},
{uc1, . . . , uc20}) in J .

Since J
(
k1 ··· kp 2a 3b 5c
1 ··· 1 2 3 5

)
is obtained from J by quotienting by the normal closure

in J̃ of {xk11 , . . . , xkii , s2a, t3b, u5c}, the isomorphism of Proposition 5.10 induces the
desired re�ection isomorphism. The last statement in Theorem 5.2 is obtained by
applying Lemma 5.4. □

6. Classification up to reflection isomorphism

In this section, we establish the classi�cation of torsion quotients of J-braid groups
up to re�ection isomorphism. As a corollary, we will deduce the classi�cation of
�nite-type generalized J-groups up to re�ection isomorphism.

6.1. Preliminary results. A useful tool to establish the classi�cation is the concept
of re�ecting hyperplane. Since torsion quotients of J-braid groups are not �actual�
re�ection groups (in the sense that we did not de�ne a re�ection representation of
these groups), we cannot de�ne re�ecting hyperplanes in the usual geometric way.
However, the usual de�nition of re�ecting hyperplanes for a linear re�ection groups
coincides with the following more combinatorial analogue, which is introduced in [12]
for toric re�ection groups.
In this section, we �x W a torsion quotient of a J-braid group.



37

De�nition 6.1 (Re�ecting hyperplane). Let ∼ be the relation on R(W ) gener-
ated by the relations ra ∼ rb for all 1 ⩽ a, b < o(r), r ∈ R(W ) and write [r] for
the equivalence class of r ∈ R(W ). The set H(W ) of re�ecting hyperplanes of W is
de�ned to by {[r]}r∈R(W ).

The action of W on R(W ) by conjugacy induces an action of W on H(W ). The
W -orbit of [r] will be denoted by W.[r].
There is a natural map O : H(W ) → N⩾2∪{∞}, which sends [r] to max{o(s) | s ∈

[r]}. Since the action of W on R(W ) preserves the order of the re�ections, the map
O is W -invariant.

Notation 6.2. A (�nite) multiset of cardinality n is de�ned as the orbit under the
symmetric group Sn of a n-tuple. If (x1, . . . , xn) is a n-tuple, then the associated
multiset will be denoted by {{x1, . . . , xn}}.

De�nition 6.3 (Torsions). Let [r1], . . . , [rk] be a set of representatives of the W -
orbits of H(W ). The multiset of torsions T (W ) is de�ned by

T (W ) := {{O([ri]) | i ∈ [[1, k]]}} .

Notice that T (W ) does not depend on the choice of the ri's.

These concepts are useful as they are invariants under re�ection isomorphism:

Proposition 6.4. Let W1,W2 be two torsion quotients of J-braid groups, and let
φ : W1 → W2 be a re�ection isomorphism.

(a) The morphism φ induces a bijection H(W1) → H(W2) sending [r] to [φ(r)].
(b) The above bijection induces a bijection H(W1)/W1 → H(W2)/W2 sending

W1.[r] to W2.[φ(r)].
(c) The two multisets T (W1) and T (W2) are equal.

Proof. (a) By de�nition, φ restricts to a bijection R(W1) → R(W2). For r ∈ R(W1)
and a, b ∈ [[1, o(r)− 1]], we have [φ(r)a] = [φ(r)b] in H(W2) by de�nition of H(W2).
Thus the map [r] 7→ [φ(r)] is a well-de�ned map H(W1) → H(W2). Considering the
inverse morphism φ−1 (which is also a re�ection isomorphism), we obtain that the
map [r] 7→ [φ(r)] is actually a bijection.

(b) Let φ denote the bijection H(W1) → H(W2) given by point (a). Let r ∈ R(W1)
and w ∈ W . We have

φ(w.[r]) = φ([wrw−1]) = [φ(wrw−1)] = φ(w).[φ(r)] = φ(w).φ([r]),

and thus φ induces a well de�ned map H(W1)/W1 → H(W2)/W2 sending W1.[r]
to W2.[φ(r)]. Again, considering the inverse morphism φ−1 gives that this map is
actually a bijection.

(c) Let us denote by O1, O2 the respectives maps O for the groups W1 and W2.
For r ∈ R(W1), we have

O2(φ([r])) = O2([φ(r)]) = max{o(s) | s ∈ [φ(r)]}.

Now, φ induces an order preserving bijection [r] → [φ(r)]. Thus the above maximum
is also the maximum of the set {o(s) | s ∈ [r]}, that is O1([r]). If [r1], . . . , [rk] is a
set of representatives of the W1 orbits of H(W1), then [φ(r1)], . . . , [φ(rk)] is a set of
representatives of the W2 orbits of H(W2) by point (b). We then have

T (W1) = {{O1([ri]) | i ∈ [[1, k]]}} = {{O2([φ(ri)]) | i ∈ [[1, k]]}} = T (W2).

□

The (multiset) cardinality of T (W ) is the cardinality of H(W )/W , which is also
invariant under re�ection isomorphism.
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Remark 6.5. Notice that the proof of Proposition 6.4 is purely formal and doesn't
use the particular theory of torsion quotients of J-braid groups. In particular, the
de�nition and results of this section also applies to other contexts where a concept of
re�ection can be de�ned (or really, any distinguished generating set invariant under
conjugacy). In particular, we can also de�ne the re�ecting hyperplanes and the
torsion set of a generalized J-group.

6.2. Reduced J-groups. In the previous section, we have shown that every �nite-
type generalized J-group is re�ection isomorphic to a torsion of a J-braid group.
Corollary 4.15 (embedding of torsion quotients) gives a converse to this result, but
it is actually more speci�c. Indeed, a torsion quotient of J-braid group is re�ection
isomorphic to a particular type of �nite-type generalized J-group, which we call
reduced J-group. The main interest of this particular family is that we can complete
its classi�cation up to re�ection isomorphism.
In this section, we �x a positive integer p, along with a p-tuple K = (k1, . . . , kp)

in (N⩾2 ∪ {∞})p. We also �x another tuple K ′ = (k′1, . . . , k
′
p) in (N⩾1)

p such that k′i
divides ki for each i.

De�nition 6.6 (Reduced J-group). A generalized J-group J
(K
K′
)
is said to be

reduced if K ′ contains at most two entries distinct from 1, and if all the elements of
K ′ are pairwise coprime.

Lemma 6.7. A generalized J-group has �nite-type if and only if it is isomorphic to
a reduced J-group.

Proof. Let J
(K
K′
)
be a reduced J-group. By de�nition, J(K ′) is a �nite cyclic group,

and thus J
(K
K′
)
has �nite-type. Conversely, let J

(K
K′
)
be a �nite type generalized

J-group. Then J
(K
K′
)
belongs (up to re�ection isomorphism) to one of the families of

Lemma 5.1. By Lemmas 5.6, 5.7, 5.8 and Proposition 5.18, four of the �ve families of
Lemma 5.1 are actually re�ection isomorphic to generalized parent J-groups, which
are in particular �nite-type generalized J-group. The only case remaining is the case

J
(

K
K′

)
= J

(
k1 ··· kp nb mc
1 ··· 1 n m

)
.

Le us write d := n ∧m, m′ := m
d , n

′ := n
d . By Corollary 4.15 (embedding or torsion

quotients), we have

J
(
k1 ··· kp nb mc
1 ··· 1 n m

) ∼=Ref B∗
∗(pdm

′, pdn′, d · (k1, . . . , kp), b, c)
∼=Ref J

( d·(k1 ··· kp) bn′ cm′

d·(1 ··· 1) n′ m′
)

and the latter is a reduced J-group. □

Remark 6.8. If p = 3, then a reduced J-group J
(K
K′
)
can be written as J

(
K bn cm
1 n m

)
with n and m coprime. In this case, the de�nition of reduced J-groups coincide with
that of J-re�ection group appearing in [14].

Lemma 6.9. Let r ∈ J
(K
K′
)
be a re�ection. The re�ecting hyperplane [r] consists of

non-trivial powers of a re�ection in J
(K
K′
)
.

Proof. Assume that there exists r1, r2 ∈ J
(K
K′
)
and n,m ∈ N⩾1 such that rn1 = rm2 .

We write r1 = gsl1i g
−1 and r2 = hsl2j h

−1. Up to conjugacy, we can assume that

g = 1. We get sl1ni = hsl2mj h−1. In particular, Lemma 3.17 tells us that i = j and
that l1n = l2m.
Since h centralizes sl2mj , it centralizes sj by Proposition 3.16 (centralizer of a

re�ection). We then have that r2 = sl2i is a power of si, as well as r1 = slii . Using

Lemma 3.4, r1 and r2 are powers of s
k′i
i , which concludes the proof □
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Recall that for a generalized J-group J
(K
K′
)
, the quotient Q of J(K ′) by the image

of Z(J(K)) is useful for studying the conjugacy of re�ections. In the case where J
(K
K′
)

is reduced, the group J(K ′) is cyclic and Q is trivial. In particular by Proposition
3.18 (conjugacy classes of re�ections), we obtain

Lemma 6.10. Let J
(K
K′
)
be a reduced J-group.

(a) Two re�ections r, r′ ∈ R(J
(K
K′
)
) are conjugate in J

(K
K′
)
if and only if they

are conjugate in J(K).

(b) We have |H(J
(K
K′
)
)| = p and T (J

(K
K′
)
) is the submultiset of {{K/K ′}} consist-

ing of elements di�erent from 1, and where K/K ′ = (k1/k
′
1, . . . , kp/k

′
p).

Proof. Point (a) is a direct application of Proposition 3.18 since the quotient Q is

trivial in this case. After point (a), a complete system of representatives of J
(K
K′
)
-

orbits on H(J
(K
K′
)
) is the set of nontrivial elements among, {sk

′
1

1 , . . . , s
k′p
p }. Moreover,

by Lemma 6.9, any r in this set generates [r]. Knowing that the torsion of s
k′i
i is

ki/k
′
i, we have the result. □

The fact that the quotient group Q evoked above is trivial has another application,
which is that we can compute the inner automorphism group of a reduced J-group.

Lemma 6.11. Assume that p ⩾ 3 and that J
(K
K′
)
is reduced. Then the inner au-

tomorphism group J
(K
K′
)
is isomorphic to the alternating polygonal Coxeter group

W+
K .

Proof. Since p ⩾ 3, we can consider the natural morphism π : J(K) → W+
K , whose

kernel is the center of J(K). By Corollary 3.20 (center of generalized J-groups), the

kernel of the restriction of π to J
(K
K′
)
is the center of J

(K
K′
)
. Thus the imageW+

K (K ′)

of J
(K
K′
)
under the morphism π is isomorphic to the inner automorphism group of

J
(K
K′
)
. Since J

(K
K′
)
, there are at most two entries n,m in K ′ which are di�erent from

1. Thus a presentation for the quotient W+
K/W+

K (K ′) is ⟨x, y | xn = ym = 1, xy = 1⟩.
Since n and m are coprime, this group is trivial so that we have W+

K (K ′) = W+
K and

the result is shown. □

On top of representing every �nite-type generalized J-group up to re�ection iso-
morphism, the re�ection isomorphism problem is rather easily solvable for reduced
J-groups. Our solution to this problem relies on an induction argument using the
following lemma

Lemma 6.12 (Conjugacy class deletion). Let i ∈ [[1, p]]. Let K̂i be the tuple
obtained from K by replacing the i-th entry with ki/k

′
i. Let alsot t1, . . . , tp denote the

generators of J(K̂i). The correspondence given by sj 7→ tj for j ∈ [[1, p]] induces a

surjective morphism π : J(K) → J(K̂i), whose kernel is normally generated by s
k′i
i .

Moreover, if J
(K
K′
)
is reduced, then π restricts to a surjective morphism J

(K
K′
)
→

J
(K̂i
K′
)
, whose kernel is the normal closure of s

k′i
i in J

(K
K′
)
.

Proof. Note that if ki = k′i, then K̂i = K and there is nothing to show. We then
assume that ki > k′i. The �rst statement comes from the observation that adding the

relation s
k′i
i = 1 to the de�ning presentation of J(K) yields the de�ning presentation

of J(K̂i) (note that if k′i = 1, this amounts to deleting si entirely). Now, assume

that J
(K
K′
)
is reduced. By Lemma 6.10, the conjugacy class of s

k′i
i in J

(K
K′
)
and in

J(K) coincide. Thus the normal closures of s
k′i
i in J

(K
K′
)
and in J(K) coincide.
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The kernel of the restriction of π to J
(K
K′
)
is then the normal closure of s

k′j
j in

J
(K
K′
)
. Moreover, since J

(K
K′
)
is the normal closure in J(K) of {s

k′j
j | j ∈ [[1, p]]}, and

since π is surjective, the image of J
(K
K′
)
in J(K̂i) is equal to J

(K̂i
K′
)
. □

Notice that in the above lemma, the resulting group J
(K̂i
K′
)
is again a reduced

J-group (up to deleting a possible
(1
1

)
column).

Proposition 6.13 (Classi�cation of reduced J-groups).

Let W1 := J
(K
K′
)
and W2 := J

(L
L′
)
be two reduced J-groups.

(a) The group W1 is abelian if and only if p ⩽ 2, in which case W1
∼=Ref J

(
k1/k′1

1

)
or W1

∼=Ref J
(
k1/k′1 k2/k′2

1 1

)
depending on the length of K.

(b) If W1 and W2 are nonabelian, then we have W1
∼=Ref W2 if and only if p = q

and if there is σ ∈ Sp such that σ(K) = L and σ(K ′) = L′.

Proof. (a) The �rst statement is already known by Corollary 3.20 since the gener-
alized parent J-group is known to be abelian if and only if p ⩽ 2. If p = 2, then

J
(K
K′
)
= J

( k1 k2
k′1 k′2

) ∼=Ref J
(
k1/k′1 k2/k′2

1 1

)
. If p = 1, then J

(K
K′
)
= J

( k1
k′1

) ∼=Ref J
(
k1/k′1

1

)
.

(b) Let W1 := J
(K
K′
)
and W2 := J

(L
L′
)
be two reduced J-groups, and let φ :

W1 → W2 be a re�ection isomorphism. By Lemma 6.11, we have W+
L ≃ W+

K . By
Proposition 2.11, we have K = L up to permutation, and in particular the lengths
of K and L coincide. Let us denote it by p. Since we assume W1 and W2 to be
nonabelian, we can assume that p ⩾ 3. We now proceed by induction on p.
The case p = 3 is already handled in [14, Theorem 1.6]. Indeed, reduced J-groups

in this case coincide with the J-re�ection groups introduced in loc. cit (see Remark
6.8).
Assume now that p ⩾ 4. Up to permuting K and K ′, we can assume that k′1 = 1.

Considering the bijection H(W1)/W1 → H(W2)/W2 induced by φ after Proposition

6.4, we can consider the unique i ∈ [[1, p]] such that W2.[φ(s1)] = W2.[t
ℓ′i
i ]. By Lemma

6.12, we have

J
(
K̂1

K′

) ∼=Ref J
(
L̂i

L′

)
.

Since k′1 = 1, the actual de�ning matrix
(κ
κ′
)
of J

(
K̂1

K′

)
is obtained from

(
K̂1

K′

)
by

removing one column
(1
1

)
. We then have |κ| = p − 1. As we explained above, the

same must hold for the de�ning matrix
(λ
λ′
)
of J

(
L̂i

L′

)
. Which is possible if and only if

ℓ′i = 1 (and |λ| = p− 1). The induction hypothesis gives that there is some σ ∈ Sp−1

such that σ(κ) = λ and σ(κ′) = σ(λ′). Since the order of φ(s1) is equal to the order
of s1, we have k1/k

′
1 = ℓi/ℓ

′
i. The equality k′1 = ℓ′i = 1 then gives that the columns(k1

1

)
and

(ℓi
1

)
are equal, which �nishes the proof. □

6.3. Classi�cation of torsion quotients of J-braid groups. We are now able
to complete the classi�cation of torsion quotients of J-braid group up to re�ection
isomorphism, by taking advantage of Corollary 4.15 (embedding of torsion quotients)
and of the classi�cation of reduced J-re�ection groups.
In this section, we �x four positive integers n,m, p, q. We let d := n ∧ m (resp.

d′ := p∧q) denote the gcd of n and m (resp. of p and q). We also �x two tuples K :=
(k1, . . . , kd), L := (ℓ1, . . . , ℓd′) of elements in N⩾2 ∪ {∞}. Lastly, we �x b, c, β, γ ∈
N⩾2 ∪∞.
We will use the results of Section 6.1, in particular, the following lemma will be

useful:

Lemma 6.14. Let W be a torsion quotient of J-braid group.

• If W = B∗
∗(n,m;K, b, c), then |H(W )/W | = d+ 2 and T (W ) = {{K, b, c}}.
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• If W = B∗(n,m;K, c), then |H(W )/W | = d+ 1 and T (W ) = {{K, c}}.
• If W = B∗(n,m;K, b), then |H(W )/W | = d+ 1 and T (W ) = {{K, b}}.
• If W = B(n,m;K), then |H(W )/W | = d and T (W ) = {{K}}.

Proof. We only prove the �rst point, the other points are obtained similarly. Af-
ter Lemma 4.7 (conjugacy classes of braid re�ections), a complete system of rep-
resentatives of W orbits on H(W ) is {[x1], . . . , [xd], [y], [z]}. Moreover, any r ∈
{x1, . . . , xd, y, z} generates [r]. Knowing that the torsion of x1, . . . , xd, y, z is given
by k1, . . . , kd, b, c, we have the result. □

We already have seen several instances of re�ection isomorphisms between torsion
quotients of J-braid groups in Corollary 4.16 (permuting torsion coe�cients) and
Corollary 4.17 (swap of parameters in torsion quotients). Let us list a few more such
isomorphisms.

Lemma 6.15. We have the following re�ection isomorphisms

(a) B∗(n,m;K, c) ∼=Ref B(n+ n
m ,m+ 1; (K, c)) if m divides n.

(b) B∗
∗(n,m;K, b, c) ∼=Ref B∗(n+ n

m ,m+ 1; (K, c), b) if m divides n.
(c) B∗(n,m;K, b) ∼=Ref B(n+ 1,m+ m

n ; (K, b)) if n divides m.
(d) B∗

∗(n,m;K, b, c) ∼=Ref B∗(n+ 1,m+ m
n ; (K, b), c) if n divides m.

(e) B(2, 2; (k1, k2)) ∼=Ref B∗(1,m; (k1), k2) ∼=Ref B∗(n, 1; (k1), k2).
(f) B(1, n; (k1)) ∼=Ref B(1,m; (k1)).

Proof. (a) is a consequence of (b). Assume that m divides n, in other words that we
have m′ = 1, d = m and n′ = n

m . By Corollary 4.15 and Corollary 4.16, we have

B∗
∗(n,m;K, b, c) ∼=Ref J

(
K bn′ cm′

d·1 n′ m′
)

∼=Ref J
(
K bn′ c
1 n′ 1

)
∼=Ref J

(
K c bn′

1 1 n′
)

∼=Ref B∗(n+
n

m
,m+ 1; (K, c), b)

as claimed. (c) and (d) are respective consequences of (a) and (b) using Corollary
4.17.

(e) Again by Corollary 4.15 and Corollary 4.16, we have

B∗(1,m; (k1), k2) ∼=Ref J
(
k1 k2m′ 1
1 m′ 1

)
∼=Ref J

(
k1 k2m′

1 m′

)
∼=Ref J

(
k1 k2
1 1

)
∼= B(2, 2; (k1, k2)).

The second isomorphism is obtained using Corollary 4.17.
(f) Both of the de�ning presentations are ⟨x | xk1 = 1 if k1 < ∞⟩. □

Since re�ection isomorphisms are in particular group isomorphisms, two re�ec-
tion isomorphic torsion quotients of J-braid groups are either both abelian or both
nonabelian. The following lemma completely classi�es abelian torsion quotients of
J-braid groups.

Lemma 6.16 (Determination of abelian torsion quotients).

(a) The group B∗
∗(n,m;K, b, c) is not abelian.

(b) The group B∗(n,m;K, c) is abelian if and only if n = 1.
(c) The group B∗(n,m;K, b) is abelian if and only if m = 1.
(d) The group B(n,m;K) is abelian if and only if 1 ∈ [[n,m]], or if n = m = 2.

Proof. (a) Let W := B∗
∗(n,m;K, b, c). By Corollary 4.15, we have

W ∼=Ref J
(

K bn′ cm′

d·1 n′ m′
)
.
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Since b, c ⩾ 2, the de�ning matrix of W as a reduced J-group has d+2 > 2 nontrivial
columns. The group W is then nonabelian by Corollary 3.20 (center of generalized
J-group).

(b) Let W := B∗(n,m;K, c). If n = 1, then we saw in the proof of Theorem 4.5
(isomorphism type of J-braid group) that B∗(1,m) is free abelian generated by x1
and z.
Assume now that n′ ̸= 1. By Corollary 4.15, we have

W ∼=Ref J
(

K n′ cm′

d·1 n′ m′
)
.

If n′ ̸= 1, then the de�ning matrix ofW as a reduced J-group has d+2 > 2 nontrivial
columns. If n′ = 1, then d = n ⩾ 2 by assumption, and the de�ning matrix of W as
a reduced J-group then has d+ 1 > 2 nontrivial columns. In both cases, the group
W is nonabelian by Corollary 3.20.

(c) The group B∗(n,m;K, b) is re�ection isomorphic to B∗(m;n;K, c) by Corollary
4.17. The results then comes from point (b).

(d) Let W := B(n,m;K). By Corollary 4.17, we can assume that n ⩾ m. If
1 ∈ {n,m} or if n = m = 2, then B(n,m) is abelian by Theorem 4.5.
Assume now that we are not in one of these cases, i.e. n ⩾ 2 and m ⩾ 3. By

Corollary 4.15, we have
W ∼=Ref J

(
K n′ m′

d·1 n′ m′
)
.

If n′ ̸= 1, then m′ ̸= 1 and the de�ning matrix of W as a reduced J-group has
d + 2 > 2 nontrivial columns. If n′ = 1, then d = n ⩾ 2 by assumption, and the
de�ning matrix of W as a reduced J-group then has d + 1 > 2 nontrivial columns.
In both cases, the group W is nonabelian by Corollary 3.20. □

Theorem 6.17. The re�ection isomorphism relation on the set of torsion quotients
of J-braid groups is generated by the isomorphisms appearing in Corollary 4.16,
Corollary 4.17 and Lemma 6.15. In other words, it is generated by the following
isomorphisms:

• Permutation of the tuple K.,

• B∗
∗(n,m;K, b, c) ∼=Ref B∗

∗(n,m;K, c, b),

• B∗(n,m;K, c) ∼=Ref B∗(m,n;K, c),

• B(n,m;K) ∼=Ref B(m,n;K),

• B∗
(∗)(n,m;K(, b), c) ∼=Ref B(∗)(n+ n

m ,m+ 1; (K, c)(, b)) if m divides n,

• B(2, 2; (k1, k2)) ∼=Ref B∗(1,m; (k1), k2) ∼=Ref B∗(n, 1; (k1), k2),

• B(1, n; (k1)) ∼=Ref B(1,m; (k1)).

In order to prove Theorem 6.17, we have to consider two re�ection isomorphic
torsion quotient of J-braid groups W1 and W2, and to show that they are related by
a sequence of re�ection isomorphism appearing in either Corollary 4.16, Corollary
4.17 or Lemma 6.15.
Notice that by Corollary 4.17, we do not need to consider the case where W1 =

B∗(n,m;K, b) (resp. where W2 = B∗(p, q;K,β)).
Case 0 : W1 and W2 are abelian By Lemma 6.15 and Lemma 6.16, It is su�cient
to consider the cases of groups of the form B(2, 2; (k1, k2)) or B(1, 1, (k1)). These
two groups are not re�ection isomorphic as they do not have the same number of
conjugacy classes of re�ecting hyperplanes.
For the remainder of the proof, we assume that neither W1 nor W2 is abelian.

Case 1 : W1 = B(n,m;K),W2 = B(p, q;L).
First, we have d = |H(W1)/W1| = |H(W2)/W2| = d′ by Proposition 6.4 and Lemma
6.14. Moreover, these two results also give that T (W1) = {{K}} = {{L}} = T (W2).
Applying Corollary 4.16, we can assume that L = K. Applying Corollary 4.17, we
can assume that n ⩽ m and p ⩽ q.
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Now, by Corollary 4.15, we have

W1
∼=Ref J

(
K n′ m′

d·1 n′ m′
)
and W2

∼=Ref J
( K p′ q′

d·1 p′ q′
)
.

In order to properly write W1,W2 as reduced J-groups, we may need to remove
columns for instance if n′ = 1 or if m′ = 1. However, after these reductions, applying
Proposition 6.13 yields that the number of elements in (n′,m′) which are equal to 1
is equal to the number of elements in (p′, q′) which are equal to 1. Moreover, since
n′ ⩽ m′ and p′ ⩽ q′, we deduce that in each case we have n′ = p′ and m′ = q′. Since
d = d′, we deduce that n = p and m = q. In other words W1 = W2.
Case 2 : W1 = B∗(n,m;K, c),W2 = B(p, q;L).
First, we have d + 1 = |H(W1)/W1| = |H(W2)/W2| = d′ by Proposition 6.4 and
Lemma 6.14. Moreover, these two results also give that T (W1) = {{K, c}} = {{L}} =
T (W2).
Now, by Corollary 4.15, we have

W1
∼=Ref J

(
K n′ cm′

d·1 n′ m′
)
and W2

∼=Ref J
( K p′ q′

d·1 p′ q′
)
.

If m′ = 1 (i.e. if m divides n), then W1
∼=Ref B(n+ n

m ,m+1; (K, c)) by Lemma 6.15
and we are in Case 1.
If m′ > 1, then since c ⩾ 2, the column

(cm′

m′
)
then has two distinct coe�cient, and

the bottom coe�cients is di�erent from 1. Since no column in the de�ning matrix of
W2 satis�es this condition (even if p′ = 1 or q′ = 1), then Proposition 6.13 implies
that W1 and W2 cannot be re�ection isomorphic.
Case 3 : W1 = B∗

∗(n,m;K, b, c),W2 = B(p, q;L).
If n′ = 1, then W1

∼=Ref B∗(n + 1,m + m
n ; (K, b), c) by Lemma 6.15 and we are in

Case 2. Similarly, if m′ = 1, then W1
∼=Ref B∗(n + n

m ,m + 1; (K, c), b) by Lemma
6.15. By Corollary 4.17 we are then also in Case 2.
Now, by Corollary 4.15, we have

W1
∼=Ref J

(
K bn′ cm′

d·1 n′ m′
)
and W2

∼=Ref J
( L p′ q′

d′·1 p′ q′
)
.

Since b, c ⩾ 2, the de�ning matrix of W1 contains two columns whose coe�cients are
distinct while the bottom coe�cient is di�erent from 1. Since the de�ning matrix of
W1 contains no such column (even in p′ = 1 or q′ = 1), Proposition 6.13 implies that
W1 and W2 cannot be re�ection isomorphic.
Case 4 : W1 = B∗(n,m;K, c),W2 = B∗(p, q;L, γ).

First, we have d+ 1 = |H(W1)/W1| = |H(W2)/W2| = d′ + 1 by Proposition 6.4 and
Lemma 6.14. Moreover, these two results also give that T (W1) = {{K, c}} = {{L, γ}} =
T (W2).
Now, by Corollary 4.15, we have

W1
∼=Ref J

(
K n′ cm′

d·1 n′ m′
)
and W2

∼=Ref J
( L p′ γq′

d·1 p′ q′
)
.

If m′ = 1, then W1
∼=Ref B(n+ n

m ,m+ 1; (K, c)) by Lemma 6.15 and we are in Case
2. Similarly, if q′ = 1, then W2

∼=Ref B(p + p
q , q + 1; (L, γ)) by Lemma 6.15 and we

are also in Case 2. We can then assume that m′, q′ > 1.

Since c ⩾ 2 (resp. γ ⩾ 2), the column
(cm′

m′
)
(resp.

(γq′
q′
)
) is the only column in the

de�ning matrix of W1 (resp. of W2) whose coe�cients are distinct while the bottom
coe�cient is di�erent from 1. By Proposition 6.13, we then have m′ = q′ and c = γ.
Moreover, since d = d′, we have m = q.
If n′ = 1, then the de�ning matrix of W1 contains d+ 1 columns. By Proposition

6.13, we must then have p′ = 1. If n′ > 1, then
(n′

n′
)
is the only column in the

de�ning matrix of W1 whose coe�cients are equal. Since the only possible column

in the de�ning matrix of W2 whose coe�cients are equal is
(p′
p′
)
, Proposition 6.13
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implies that n′ = p′ > 1. In each case, we have p′ = n′ and p = n since d = d′. In
other words W1 = W2.
Case 5 : W1 = B∗

∗(n,m;K, b, c),W2 = B∗(p, q;L, γ).

If n′ = 1, then W1
∼=Ref B∗(n+1,m+m

n ; (K, b), c) by Lemma 6.15 and we are in Case
4. If m′ = 1, then W1

∼=Ref B∗(n+ n
m ,m+1; (K, c), b) by Lemma 6.15. By Corollary

4.17 we are then also in Case 4. If q′ = 1, then W2
∼=Ref B(p + p

q , q + 1; (L, γ)) by

Lemma 6.15 and we are in Case 3. We can then assume that n′,m′, q′ > 1.
Now, by Corollary 4.15, we have

W1
∼=Ref J

(
K bn′ cm′

d·1 n′ m′
)
and W2

∼=Ref J
( L p′ γq′

d′·1 p′ q′
)
.

Since b, c ⩾ 2, the de�ning matrix of W1 contains two columns whose coe�cients are
distinct while the bottom coe�cient is di�erent from 1. Since γ ⩾ 2, the de�ning
matrix of W1 contains one such column (even in p′ = 1), Proposition 6.13 implies
that W1 and W2 cannot be re�ection isomorphic.
Case 6 : W1 = B∗

∗(n,m;K, b, c),W2 = B∗
∗(p, q;L, β, γ).

First, we have d + 2 = |H(W1)/W1| = |H(W2)/W2| = d′ + 2 by Proposition 6.4
and Lemma 6.14. Moreover, these two results also give that T (W1) = {{K, b, c}} =
{{L, β, γ}} = T (W2). Applying Corollary 4.17, we can assume that n ⩽ m and p ⩽ q.
Now, by Corollary 4.15, we have

W1
∼=Ref J

(
K bn′ cm′

d·1 n′ m′
)
and W2

∼=Ref J
( L βp′ γq′

d·1 p′ q′
)
.

If n′ = 1, then W1
∼=Ref B∗(n + 1,m + m

n ; (K, b), c) by Lemma 6.15 and we are in
Case 5. If m′ = 1, then n′ ⩽ m′ is also equal to 1 and we are also in Case 4. If p′ = 1
or if q′ = 1, then exchanging the roles of W1 and W2 also brings us back to Case 4.
We can then assume that n′,m′, p′, q′ > 1.

Since b, c ⩾ 2 (resp. β, γ ⩾ 2), the columns
(bn′

n′
)
,
(cm′

m′
)
(resp.

(βp′
p′
)
,
(γq′
q′
)
) are

the only columns in the de�ning matrix of W1 (resp. of W2) whose coe�cients are
distincts while the bottom coe�cient is di�erent from 1. By Proposition 6.13, and
since n′ ⩽ m′, p′ ⩽ q′, we then have n′ = p′, m′ = q′. Since d = d′, we deduce that
n = p and m = q. Moreover, we also have bn′ = βp′ and cm′ = γq′, which implies
b = β and c = γ. In other words W1 = W2.
Since Cases 0 to 6 cover all possibilities, this �nishes the proof of Theorem 6.17.

We �nish this section with a consequence of Theorem 6.17 on the classi�cation of
J-braid groups.
Considering the isomorphisms given in Corollary 4.16, Corollary 4.17 and Lemma

6.15 when all the torsions are in�nite, we obtain the following result:

Corollary 6.18. The re�ection isomorphism relation on the set of J-braid groups is
generated by the following relations

(1) B∗
∗(n,m) ∼=Ref B∗

∗(m,n); B∗(n,m) ∼=Ref B∗(n,m); B(n,m) ∼=Ref B(m,n),
(2) B∗(n,m) ∼=Ref B(n+ n

m ,m+ 1) if m divides n,
(3) B∗

∗(n,m) ∼=Ref B∗(n+ n
m ,m+ 1) if m divides n,

(4) B∗(n,m) ∼=Ref B(n+ 1,m+ m
n ) if n divides m,

(5) B∗
∗(n,m) ∼=Ref B∗(n+ 1,m+ m

n ) if n divides m,
(6) B(2, 2) ∼=Ref B∗(1,m) ∼=Ref B∗(n, 1),
(7) B(1, n) ∼=Ref B(1,m).

Since each re�ection isomorphism given in Corollary 4.16, Corollary 4.17 and
Lemma 6.15 lifts at the level of J-braid group, we also have the following corol-
lary:

Corollary 6.19. Let B,B′ be two J-braid groups, and let W,W ′ be respective torsion
quotients of B and B′. If W and W ′ are re�ection isomorphic, then so are B and B′.

Remark 6.20. Specializing Corollary 6.19 to p = 3 solves [16, Conjecture 3.2.3].
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7. Seifert links

7.1. Reminders on Seifert links. So far our point of view on J-braid groups and
their torsion quotients has been purely combinatorial and given in terms of generators
and relations. A topological interpretation of J-braid groups is given in [13] as link
groups of particular links called torus necklaces, which generalize the classical torus
knots. Torus necklaces make up the majority of a family of links called Seifert links.
We give some reminders on Seifert links here, following the exposition of [13].
In this section, we �x two positive integers n,m.
We start by de�ning torus necklaces following (for a precise de�nition as the closure

of particular braids, see [13, De�nition 4.2]).

• The torus link L(n,m) is the closure of the braid (σ1 · · ·σn−1)
m, where

σ1, . . . , σn−1 denote the Artin generators of the braid group on n strands.
(see Figure 1).

• The link L∗(n,m) is the disjoint union of L(n,m) with a circle going around
the internal heart of the torus (see Figure 1).

• The link L∗(n,m) is the disjoint union of L(n,m) with a circle going around
the external heart of the torus (see Figure 1).

• The link L∗
∗(n,m) is the disjoint union of L(n,m) with two circles, one around

the internal heart of the torus, and one around its external heart (see Figure
1).

On top of torus necklaces, we are interested in keychain links: The keychain K(k)
is the disjoint union of k circles around the internal heart of the torus (see Figure 2).

(a) L∗
∗(3, 4) (b) L∗(3, 4) (c) L∗(3, 4) (d) L(3, 4)

Figure 1. The torus necklaces L∗
∗(3, 4), L∗(3, 4), L

∗(3, 4) and L(3, 4)

Figure 2. The keychain K(5)

The study of these links is justi�ed by the following result which classi�es all links
whose associated group admits a nontrivial center:

Theorem 7.1. [6] and [5, Theorem 1]

(1) The knot group of a knot K has a nontrivial center if and only if K is isotopic
to a torus knot.

(2) The link group of a link L has a nontrivial center if and only if L is isotopic
to a torus necklace or to a keychain.
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The links which appear in the second statement of the above theorem are called
Seifert links since they are precisely the links whose complement in S3 are Seifert
�bered spaces. Not only are Seifert links interesting because the center of their link
groups is nontrivial, they are also central objects in the study of the so-called JSJ
decomposition of link complements (see [4] for a discussion of the JSJ decomposition
in the context of link). The relationship between Seifert links and J-braid groups
appeared in [13] by the second author:

Theorem 7.2. [13, Theorem 4.7]

(1) The link group of L∗
∗(n,m) is isomorphic to B∗

∗(n,m).
(2) The link group of L∗(n,m) is isomorphic to B∗(n,m).
(3) The link group of L∗(n,m) is isomorphic to B∗(n,m).
(4) The link group of L(n,m) is isomorphic to B(n,m).

Moreover, under these isomorphisms, meridians of the link group correspond to braid
re�ections of the J-braid group.

The statement in [13, Theorem 4.7] assumes that n,m are coprime, but as pointed
out in [13, Section 5.1], the isomorphisms of [13, Theorem 4.7] does not require any
coprimality assumption. Moreover, examining the proof shows that the assumptions
that m ⩾ 2 is not required for the second statement to be true. Likewise for the
third and fourth statements.
On top of the torus necklaces groups, let us also mention that the group of the

keychain link K(k) is a direct product Fk × Z of a free group on k letters with the
group of integers. Under this isomorphism, the generators of Fk × Z correspond to
meridians in the link group.
A classi�cation of Seifert links up to isotopy is given by the following result:

Proposition 7.3 (Isotopy classes of Seifert links). [4, Proposition 3.5]
The equivalence relation ∼ of unoriented isotopy on Seifert links is generated by the
relations:

(a) L∗
∗(n,m) ∼ L∗

∗(m,n)); L∗(n,m) ∼ L∗(m,n); L(n,m) ∼ L(m,n),
(b) L∗(n,m) ∼ L(n+ n

m ,m+ 1) if m|n,
(c) L∗

∗(n,m) ∼ L∗(n+ n
m ,m+ 1) if m|n,

(d) L(2, 2) ∼ L∗(n, 1) ∼ L∗(1,m),
(e) L(1, n) ∼ L(1,m),
(f) L(2, 2) ∼ K(1),
(g) L(1, 1) ∼ K(0).

Combining this result with Corollary 6.18, we can show that the "topological
isomorphism type" of a link group completely characterizes the isotopy type of a
Seifert link:

Theorem 7.4. Let L,L′ be two Seifert links, and let L,L′ be their respective link
groups. The following are equivalent

(i) The links L,L′ are isotopic,
(ii) There is an isomorphism L → L′ which maps meridians in L bijectively to

meridians in L′.

Proof. (i) ⇒ (ii) is true in general for all links, so that we only have to prove the
converse statement.
First, we assume that L and L′ are torus necklaces. In this case L (resp. L′)

is isomorphic to a J-braid group B (resp. B′) in a way that maps meridians to
generating (braid) re�ections. Thus statement (ii) implies that B and B′ are re�ection
isomorphic. We can then apply Corollary 6.18, which implies that B and B′ are
related by a sequence of isomorphism appearing in Corollary 6.18. For each of these
isomorphisms, the associated links L and L′ are isotopic (compare the isomorpisms
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of Corollary 6.18 with the isotopies of Proposition 7.3). We then have that L and L′

are isotopic.
Now, assume that L′ is a keychain link say K(k) with k ⩾ 0. Since the link group

of K(k) is L′ = Fk × Z (where the generators are meridians), a generator of the Z
part is a meridian.
Assume that L is a torus necklace. Let B be a J-braid group isomorphic to L

in a way that maps meridians to generating re�ections. The isomorphism given
by (ii) then sends a generator of Z(L′) to a generating re�ection r of B. Since B is
re�ection isomorphic to a generalized J-re�ection group, Proposition 3.16 (centralizer
of a re�ection) implies that B = CB(r) is abelian. The group L = Fk × Z is then
also abelian, and k ⩽ 1. In this case, the link L′ is isotopic to a torus necklace by
Proposition 7.3 and we are back in the �rst case.
Lastly, assume that L = K(k′) is another keychain. We have L ≃ L′ if and only

if k = k′, in which case L and L′ are isotopic. □

7.2. Torsion quotients of Seifert links. Since for every J-braid group B there
is a Seifert link group L and an isomorphism B → L sending braid re�ections to
meridians, it is very natural to consider torsion quotients of Seifert link groups as
well.

De�nition 7.5 (Torsion quotient of a link). Let L be a link and let L1, . . . , Lp

be its knot components. A torsion quotient of L is a group of the form

π1(S3\L)/⟨⟨mk1
1 , . . . ,m

kp
p ⟩⟩, (7.1)

where for each i ∈ J1, pK,mi is a meridian of Li and ki ∈ N⩾2∪{∞}. The conjugates of
non-trivial powers of the images ofm1, . . . ,mp in this group are still called meridians.
Two such torsion quotients are said to be topologically isomorphic if there exists an
isomorphism which induces a bijection between the meridians.

By Corollary 4.15 (embedding of torsion quotients) and Theorem 5.2 (general-
ized J-groups as torsion quotients), the family of torsion quotients of J-braid groups
coincides with the family of �nite-type generalized J-group up to re�ection isomor-
phism. By Theorem 7.2, we obtain that the following families of groups coincide up
to isomorphism preserving the generators:

• Finite-type generalized J-groups
• Torsion quotients of J-braid groups
• Torsion quotients of torus necklaces

Since we know that the �nite groups in the �rst family are precisely the complex
re�ection groups of rank 2, we obtain the following result:

Corollary 7.6 (Finite torsion quotients of Seifert links). The family of �-
nite torsion quotients of Seifert links precisely coincides with the family of rank two
complex re�ection groups.

Proof. By the above discussion, the �nite torsion quotients of torus necklaces are
the �nite generalized J-groups, which are the rank two complex re�ection groups by
Corollary 3.15.
It remains to determine the �nite torsion quotients of keychain links, which is im-
mediate: if k ⩽ 2, every �nite quotient torsion of K(k) is a direct product of two
cyclic group (which is a rank two complex re�ection group) and if k ⩾ 3, every
quotient torsion of K(k) contains a free product of two nontrivial groups, hence it is
in�nite. □

It turns out that torsion quotients are extremely rigid, at least for Seifert links, in
that they detect isotopy of links:
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Theorem 7.7 (Classi�cation of torsion quotients of Seifert links).
Let L,L′ be two Seifert links, and let W,W ′ be respective torsion quotients of L and
L′. If W and W ′ are topologically isomorphic, then L and L′ are isotopic.

Proof. Assume that W and W ′ are topologically isomorphic torsion quotients of L
and L′.
If L and L′ are both torus necklaces, then the result is a combination of Corollary

6.19 with Theorem 7.4.
Now, assume that L is a torus necklace and that L′ = K(k) is a keychain. There is

a meridian in L′ which is central. The image in W of this meridian is then a central
re�ection. Proposition 3.16 then implies that W = CW (r) is abelian. Since L′ is a
direct product of Z with a free product of k nontrivial cyclic groups, we obtain that
k ⩽ 1. In each cases, L′ is isotopic to a torus necklace by Proposition 7.3 and we are
back in the �rst case.
Lastly, assume that both L = K(k) and L′ = K(k′) are keychains. We write

W := Z/a1Z ∗ · · · ∗ Z/akZ× Z/pZ and W ′ := Z/b1Z ∗ · · · ∗ Z/bk′Z× Z/qZ.
We know that W (resp. W ′) is abelian if and only if k ⩽ 1 (resp. k′ ⩽ 1). Since
W and W ′ are in particular isomorphic, we have k ⩽ 1 if and only if k′ ⩽ 1. If
k = 0, then W = Z/pZ admits 1 re�ecting hyperplane in the sense of De�nition 6.1
(replacing re�ections with meridians). If k = 1, then W ≃ Z/a1Z × Z/pZ admits
two re�ecting hyperplanes. We then have k = k′ if k = 0 or if k = 1, and L,L′ are
isotopic.
Assume now that k, k′ > 1. The center of W (resp. of W ′) is the direct factor

Z/pZ (resp. Z/qZ). The groups W/Z(W ) and W ′/Z(W ′) are the two free products
of k and k′ nontrivial cyclic groups. Since the minimal number of generators of a
free product of n nontrivial cyclic groups is n by Grushko's Theorem, we obtain that
k = k′ and that L and L′ are isotopic. □
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