GENERALIZED J-GROUPS, J-BRAID GROUPS AND SEIFERT
LINK GROUPS

OWEN GARNIER AND IGOR HALADJIAN

ABSTRACT. The family of J-groups was introduced by Achar and Aubert with
the goal of providing Coxeter-like combinatorial tools for studying rank 2 complex
reflection groups. However, J-groups lack an explicit presentation with abstract
reflections as generators. This gap was filled by Gobet, and later by the second
author, for the subfamily of so-called J-reflection groups. The obtained presenta-
tions then gave rise to a concept of J-braid group, which coincides with the link
groups of torus necklaces.

In this paper we study a generalization of J-groups. We determine which of
these groups are finitely generated. We show that, as for classical J-groups, the
family of finite generalized J-groups coincides with the family of rank 2 complex
reflection groups. We also show that finitely generated generalized J-groups coin-
cide with what we call the torsion quotients of J-braid groups. We deduce explicit
presentations for all finitely generated generalized J-groups, where the generators
are abstract reflections. We also complete the classification of these groups up to
reflection isomorphism.

As a byproduct of these results, we obtain that a quotient of a Seifert link
group obtained by adding torsion to meridians somehow determines the link up
to isotopy. Moreover, such a quotient is finite if and only if it is isomorphic to a
complex reflection group of rank two.
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It is well-known since the work of Coxeter that the family of (finite) real reflection
group coincides with the family of finite Coxeter groups (see [7],[8]). This allows for
the use of the rich combinatorics of Coxeter groups in the study of real reflection
groups. Unfortunately, no analogue of the result of Coxeter is known for complex
reflection groups. The search for such an analogue, at least in the case of rank 2
complex reflection groups, is the motivation for Achar & Aubert’s paper [1], where

they defined the family of J-groups:

Let k,n,m be positive integers. The group J(k,n,m) is defined by the group

presentation

(s,t,u ] s¥ =" = u™ = 1, stu = tus = ust),
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and it is called a parent J-group. Now, if k', n’,m’ are positive and pairwise coprime
integers which respectively divide k,n, m, the J-group J(,f, o ;n”,) is defined as the
normal closure of {s¥, " ™} in J(k,n,m).

We know that every rank two complex reflection group is the normal closure of
some reflections in one of the groups G(2¢,2,2), G7, G11 or G1g in Shephard-Todd’s
notation. Inspecting |3, Tables 1-4|, one sees that the aforementioned groups are
parent J-groups and so every rank two complex reflection group is a (finite) J-group.

The main result of [1] is the converse statement:

Theorem 1.1. [1, Theorem 1.2] A group is a rank two complex reflection group if
and only if it is a finite J-group.

In [14], generalizing the work of Gobet in [12], the second author studied the
specific case of J-groups where (at least) one of k', n’ or m’ is equal to 1. In this
case we have a uniform presentation for these groups [14, Theorem 2.29]. Moreover,
these groups are classified up to reflection isomorphism |14, Theorem 1.6] and their
centers are known |14, Theorem 1.5]. Later, in [15], the second author also defined
and studied J-braid groups attached to J-reflection groups, thus giving a Coxeter-
like generalization of complex reflection groups of rank two and their braid groups.
Moreover, connections with the triangle Von Dyck groups on the one hand and Seifert
link groups on the other hand were obtained in [13].

The purpose of this article is to define and study a family of groups we call gen-
eralized J-groups, and to extend to this case previous results on J-reflection groups.
Since our generalization contains the whole family of classical J-groups, our results
also applies in this case. We also complete the correspondence between Seifert links
and J-braid groups. As a byproduct, we give a new perspective on rank two complex
reflection groups as the family of finite torsion quotients of Seifert link groups.

Definition 1.2 (Generalized J-groups). Let kq,...,k, € N>o U {oo} and write
K = (ki1,...,kp). The group J(K) is defined by the group presentation
Mif k< o0).  (1.1)

(81,-+,5p|S182- - 8p =82+ 8p51 =+ = 8,51 Sp_1, S,

and it is called a parent generalized J-group. Now, if ki, ... 7]91,0 € N3 are respective

divisors of k1, ..., kp, and writing K’ = (k{,...,k,), the generalized J-group J([I((,)

is defined as the normal closure of {ng | i€ [1,p]} in J(K).

Notice that for p < 3, ki, ko, k3 < oo, and ki, k5, k§ pairwise coprime, we recover
the notion of classical J-groups.
Following the definition given by Gobet in [12], we call conjugates in J(K) of non-

trivial powers of elements in {sf’ | i € [1,p]} the reflections of J(I[((,). Still following
[12], we say that an isomorphism between two generalized J-groups is a reflection
1somorphism if it induces a bijection on the set of reflections.

In Section 3, we study several group theoretic properties of generalized J-groups.
Our approach takes advantage of a relationship between generalized J-groups and
some alternating subgroups of particular Coxeter groups. We call these Coxeter
groups polygonal Coxeter groups (as a generalization of the triangle Coxeter groups)
and we study them in Section 2.

We can separate three mutually exclusive cases in the study of generalized J-
groups:

(1) The generalized parent J-group is a finite group.
(2) The generalized parent J-group is infinite, but the generalized J-group has
finite index in its generalized parent J-group.
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(3) The generalized J-group is nontrivial and has infinite index in its generalized
parent J-group.

These three cases of course cover all generalized J-groups, and they are recognizable
from looking at the generalized J-group alone:

Theorem 1.3 (Proposition 3.11 and Corollary 3.14).

o A generalized J-group is finite if and only if we are in case (1).

o A generalized J-group is infinite and finitely generated if and only if we are
in case (2).

o A generalized J-group is infinitely generated if and only if we are in case (3).

Since we easily determine which generalized parent J-groups are finite (see Lemma
3.9), we obtain the list of all finite generalized J-groups. In particular no new finite
groups arise as generalized J-groups:

Corollary 1.4 (Corollary 3.15). A group is isomorphic to a finite generalized J-
group if and only if it is isomorphic to a complex reflection group of rank two.

Specializing to the case of classical J-groups, Theorem 1.3 answers [16, Question
1.1.2].

Then we compute the center of generalized J-groups. We obtain that the center
of a generalized J-groups allows us to recognize cases (1), (2) and (3):

Proposition 1.5 (Proposition 3.22).

e In case (1), the center is either a finite cyclic group or a direct product of two
finite cyclic groups.

e In case (2), the center is infinite cyclic.

o In case (3), the center is trivial.

This result again generalizes [14, Theorem 1.5] for J-reflection groups. Lastly, we
get a description of torsion elements in infinite generalized J-groups (i.e. cases (2)
and (3)).

Corollary 1.6 (Corollary 3.23). If a generalized J-group is infinite, its torsion ele-
ments are precisely its finite order reflections.

In Section 4, we give the definition of J-braid groups and their torsion quotients.
The family of J-braid groups was originally defined by the second author in [15] as a
combinatorial generalization of rank 2 complex braid groups. The family of J-braid
groups actually consists of 4 related subfamilies depending on two positive integer
parameters n, m.

The group B (n, m) has generators {z1,...,Zy,y, 2} and a presentation depending
on n and m (see Definition 4.1 for the actual presentation). The conjugates of the
generators are called the (braid) reflections of B} (n,m). The groups B*(n,m) (resp.
Bi(n,m), B(n,m)) are defined as the quotient of B}(n, m) by the normal closure of
y (resp. of z, of {y, z}).

After some reminders on J-braid groups, we introduce the other main concept of
the article, which is that of torsion quotient of J-braid group. Concretely, a torsion
quotient of a given J-braid group B is the quotient of B by the normal closure of some
(non-trivial) powers of its braid reflections. As in the case of generalized J-groups,
we define reflections as conjugates of nontrivial powers of the generators, and we
extend to this context the definition of reflection isomorphism.

The main result of Section 4 is that torsion quotients of J-braid groups are re-
flection isomorphic to finite-type generalized J-groups. In order to be able to give a
precise statement, we need some notation. A torsion quotient of a J-braid group B
is determined by the exponents of the generators of which we consider the normal
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closure. The exponents of the generators of the form x; form a tuple K, while the
integers b, ¢ are the respective exponents for the generators y and z (if B admits such
generators). With this notation we have the following result:

Theorem 1.7 (Corollary 4.15). Let n,m be positive integer with ged d, and let
n' =12 m =2 Letalso K = (ki,...,kq) € (N>2U{o0})? and b,c € (N>oU{oo}).
We have the following reflection isomorphisms:

hd BI(n,m;K,b,c) gRef J(dKl bnn;’ C,ZL//)-

o B*(n,m; K, ) s J( S5 7).
b B*(namaK7b) =Ref (dl(l b,,?// z;)
b B(n,m;K) =Ref J(c{(l Z/ z/)

where d - 1 denotes the d-tuple (1,...,1).

In particular, every torsion quotient of a J-braid group is reflection isomorphic
to some finitely generated generalized J-group. Section 5 is devoted to the proof of
the converse statement. This proof relies on a preliminary classification of finitely
generated generalized J-groups (see Lemma 5.1). We then proceed in a case-by-case

approach, the last case being handled partially by computer.

Theorem 1.8 (Theorem 5.2). Every finitely generated generalized J-group is reflec-
tion isomorphic to a torsion quotient of J-braid group.

Since torsion quotients of J-braid groups are defined by explicit presentations with
abstract reflections as generators, this result also provides explicit presentations of
generalized J-groups with abstract reflections as generators.

One of the preliminary motivations for this paper was to determine the finite
torsion quotients of J-braid groups, and more specifically of J-braid groups of the
form B(n,m). The defining presentation of the group B(n,m) coincides with the
defining presentation of the circular group G(n, m) studied by the first author in [11].
This question had already been investigated in several cases by different authors.

e In [9], Coxeter studied torsion quotients of dihedral Artin groups, that is, of
groups of the form B(2,m; K). He classifies all finite such quotients (see |9,
Section 6]).

e The results of Achar and Aubert in [1] give in particular a complete list of
the finite torsion quotients of B(3,3) (namely, finite parent J-groups).

o In [12], Gobet studied groups of the form B(n, m; K) with nAm = 1. They are
called toric reflection groups in loc. cit. and they are denoted by W (k,n,m).
Gobet realizes these groups as J-groups, showcasing the first connection be-
tween J-groups and link groups. He moreover completes their classification
up to reflection isomorphism, yielding in particular a classification of the
finite groups B(n, m; K) with n,m coprime.

Theorem 1.7 combined with the classification of finite generalized J-groups then
yields the following result:

Proposition 1.9. There are no other finite torsion quotients of J-braid groups than
those identified in [9],[1] and [12].

Since circular groups are particular cases of J-braid groups, this proposition also
applies to circular groups.

Notice that the generalized J-groups appearing in Theorem 1.7 share the property
that the bottom set of parameters contains at most two entries different from 1, in
which case they are coprime. We call generalized J-groups sharing this property
reduced J-groups. Note that if p = 3, the family of reduced J-groups coincides
with that of J-reflection groups as defined by the second author in [14]. Combining
Theorem 1.7 and Theorem 1.8, we obtain:
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Proposition 1.10. Every finitely generated generalized J-group is reflection isomor-
phic to o reduced J-group.

In Section 6, we complete the classification of reduced J-groups up to reflection
isomorphism:

Proposition 1.11 (Proposition 6.13). Let Wy := J () and Wa := J(},) be two
reduced J-groups.
(a) The group W1 is abelian if and only if p < 2, in which case W1 et J( kl{kll )
or W1 ZRes J(kl{kll kQ{ké) depending on the length of K.
(b) If Wi and Wy are nonabelian, then we have Wi =g Wo if and only if p = ¢
and if there is o € S, such that o(K) =L and o(K') = L'.

Combining this with Theorem 1.8 and Theorem 1.7, we may see reduced J-groups
as canonical representatives of reflection isomorphism classes of generalized J-groups.
Moreover, using Theorem 1.7, we can complete the classification of torsion quotients
of J-braid groups up to reflection isomorphism. We skip the complete statement
here (see Theorem 6.17 for a complete statement). We give here a consequence on
the classification of J-braid groups

Corollary 1.12 (Corollary 6.19). Let B, B’ be two J-braid groups, and let W, W’
be respective torsion quotients of B and B'. If W and W' are reflection isomorphic,
then so are B and B'.

Specializing to the case of J-reflection groups, Corollary 1.12 solves [16, Conjecture
3.2.3].

Lastly, we detail the connection with Seifert links in Section 7. In [13], the second
author showed that the family of J-braid groups coincides with that of torus necklace
groups, an important family of Seifert link groups. Under this correspondence, braid
reflections of the J-braid group correspond to meridians in the link group. In this
spirit, given a link L, we can define a torsion quotient of L as quotient of its link
group by the normal closure of some powers of meridians. Combining the results of
[13] with Theorem 1.7 and Theorem 1.8, we obtain one of the main results of this
article:

Theorem 1.13. The following families of groups coincide, up to isomorphism pre-
serving the set of generators

e Finitely generated generalized J-groups (generators: reflections)

e Reduced J-groups (generators: reflections)

e Torsion quotients of J-braid groups (generators: reflections)

e Torsion quotients of torus necklaces (generators: nontrivial powers of images
of meridians).

Combining Corollary 1.4 and Theorem 1.13, with very little additional work we
are able to give a new point of view for complex reflection groups of rank two:

Corollary 1.14. The complex reflection groups of rank two are precisely the finite
torsion quotients of Seifert links.

The last main result of this article is the classification of torsion quotients of Seifert
links up to isomorphisms which preserves the generators. The following result is
slightly more general than Corollary 1.12, although the additional cases are easily
dealt with.

Theorem 1.15 (Theorem 7.7). If two torsion quotients of Seifert links are isomor-
phic in a way which preserves the nontrivial powers of images of meridians, then the
underlying links are isotopic.
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2. PRELIMINARIES ON COXETER GROUPS

2.1. Elementary definitions and results. Recall that a Cozeter graph is an edge-
weighted simple graph I' = (I',m), where m takes values in N>9. Given a Coxeter
graph T', we will write S for the set of vertices of I'. The Cozeter group W = WL
attached to a Coxeter graph I' is defined by the following group presentation:

(S|s* =1Vs € S; (st)™=1t = Lforall{s,t} € E(I)). (2.1)
The cardinality of S is the rank of W[I']. If S cannot be decomposed as a disjoint
union S7 LISy such that every vertex of 57 is connected to every vertex of Sy by an
edge of length two, we say that W] is irreducible.

For a subset S’ C S, we denote by W the subgroup of W generated by S’. It
is classical (see |2, Section IV.1.8]) that Wg is the Coxeter group attached to the
full subgraph of I" whose vertex set is S’. The subgroup Wy is called a standard
parabolic subgroup of W. A parabolic subgroup of W is the conjugate of a standard
parabolic subgroup

Any Coxeter group W admits a natural morphism W — Z/27Z, sending every
generator s € S to 1. The kernel of this morphism is the alternating subgroup W+
of the Coxeter group W.

Let W be a Coxeter group. We give a short list of results we will use in the sequel:

e The order of an element w € W is finite if and only if w belongs to a finite
parabolic subgroup of W [2, Exercise 2, Section 4, Chapter 5].

e If the rank of W is at least 3, then Z(W™) C Z(W). In particular, if W is
infinite and irreducible, then Z(W™) is trivial [12, Proposition 3.1].

o If W is irreducible, infinite and non-affine, each finite index subgroup of W
has trivial center [19, Proposition 6.4].

2.2. Polygonal Coxeter groups. One part of the approach of Gobet in [12] for
studying torsion quotients of circular groups with coprime parameters consists in
relating such a quotient to the alternating subgroup of a triangle Coxeter Group.
We will use similar techniques when dealing with arbitrary circular groups, but the
Coxeter groups involved form a larger family, which we call polygonal Coxeter groups.
In this section, we fix an integer d > 3, along with a d-tuple K := (ki1,...,kq) in
(N>2 U {oo})?.
Definition 2.1 (Polygonal Coxeter group). We define a Coxeter graph 'k as
follows:

e The set of vertices is a set {v1,...,vq} of cardinality d (the indices are seen
modulo d).
e All edges have form {v;,v;11}. Moreover, the pair {v;,v;+1} is actually an
edge if and only if k; < oo, in which case its weight is k;.
The group Wi is the Coxeter group W[I'k], which we call the polygonal Cozeter
group attached to K.

By construction, the Coxeter presentation of Wi is
s?=1forall i=1,...,d > (2.9)
(s;8i41)" = 1for all 4 =1,...,d such that k; < oo /' '

<817827"'78d



where the indices are seen modulo d.

Remark 2.2. Using the classification of finite Coxeter groups (see [8]), the group
Wi is finite if and only if K € {(2,3,3),(2,3,4),(2,3,5)} U{(2,2,0)};>2 up to per-
mutation. The only cases in which Wx can be infinite and not irreducible are
K = (00,2,2) K = (2,00,2), K = (2,2,00) and K = (2,2,2,2). The only cases
were Wi is affine are K = (3,3,3),(2,3,6),(2,4,4) or (2,2,2,2) (again up to per-
mutation).

In [2], a presentation for the alternating group of a given Coxeter group is given.
Specialising this presentation to Wy yields the following result:
Proposition 2.3. [2, Ezercise 9, Section 1, Chapter 4] The group W admits the
following group presentation.:

(bib 1)k =1 for all i € [1,d — 2]

< bi, ...y bd—1
i+1

where the relation corresponding to i € [1,d — 2] is empty if k; = oc.

kg  3ka—1
Fodg N

Using this, we obtain another presentation of WI'{":
Corollary 2.4. The group W; admits the group presentation

afizlfor i € [1,d] with /<;,~<oo>
alag.--adzl ’

< ai,as,...,aq (2.4)
Proof. Let H be the group defined by Presentation (2.4). We define an isomorphism
between the groups H and WI'(|r
First, we define a morphism ¢ from H to WE by setting

b if i€ [1,d— 2],

ViE[[l,d]],air—) ba_1 ifi=d-—1,

byt ifi=d.

Indeed, we have ¢(a;)* =1 for all i € [1,d] and
1= (biby ') (bab3 1) - (ba—2by ) )ba1by ' = p(ar)p(az) - - - p(aq).

The inverse of this morphism is given by setting by +— a;l and b; — (agay---a;_1)7!
for i € [2,d]. This concludes the proof. O

We finish this section by establishing some group theoretic results on polygonal
Coxeter groups. Namely, we describe the centers and torsion elements of infinite
polygonal Coxeter groups, and, we give the classification of polygonal Coxeter group
up to group isomorphism.

Corollary 2.5. The center of VVI‘{|r 15 {rivial.

Proof. If Wi is finite, this is proven in [12, Proof of Theorem 3.3|. If W is infinite
and irreducible, then the result is a direct application of [12, Proposition 3.1].
The only cases where Wy is infinite and reducible are K = (00,2,2) and K =
(2,2,2,2). For K = (00,2,2), Presentation (2.4) reads

(a1,a2,a3| a3 = a3 = ayazaz = 1),
thus Wt is isomorphic to Z/27Z * Z/2Z, whose center is trivial.
For K = (2,2,2,2), the group Wy is (Z/2Z x 7./27) x (Z/27 % Z/27), whose center
is trivial. Applying [12, Proposition 3.1| again yields that Z(W}) is trivial in this
case. This concludes the proof. O

Proposition 2.6. Let K € (Nxp U {cc})? and o € Sg. Write o(K) for the tuple

(Ko(1)s - - > ko)) We have Wik = WUJF(K).
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Proof. In this proof, we use Presentation (2.4). It is enough to show the result for
the permutations (1,2) and (1,2,...,d), since these two permutations generate Sy.
For (1,2,...,d), the result is immediate. Let then o = (1,2).

For the remainder of the proof, we write a; for the generators of W;g and b; for the

generators of W;( K)- We obtain a well-defined morphism from W to W:(K) by
setting

by ! iti=1,
a; —r bl_l le = 27
(bg"'bi_l)b-_l(bfi"'bi—l)il le & [[3,d]]

(2
Exchanging the role of b; and a; yields a morphism from Wy (g) to Wyo (k) = Wk,
which is the inverse of the first morphism. This concludes the proof. O

Proposition 2.7. If Wy is infinite, then an element w in WE has finite order if
and only it is a conjugate to a power of some generator a; in Presentation (2.4) such
that k; s finite.

Proof. We mentioned in Section 2 that the torsion elements of Wi are exactly the
conjugates of elements lying in finite standard parabolic subgroups. The finite stan-
dard parabolic subgroups of Wy are those generated by two adjacent vertices in
'k with finite length. Now, recall that given a Coxeter group W and a parabolic
subgroup W’ < W, the alternating subgroup of W’ can be described as W/ N W.

Since the elements {ai,...,aq} are the generators of the alternating subgroups of
the standard parabolic subgroups generated by two adjacent vertices, this concludes
the proof. O

Corollary 2.8. Assume that Wi is infinite, and let p be the number of coordinates
of K equal to oco. There are d — p conjugacy classes of mazimal finite subgroups of
WE The finite groups in these d — p classes are isomorphic to the Z/k;,Z such that
k; is finite, in which case they are conjugates to (a;).

Proof. The proof of [12, Proposition 4.6] only uses that every finite standard parabolic
subgroup of the considered Coxeter groups has rank at most two, which is true in
our case. Thus, the aforementioned proof carries out in our setting. O

Lemma 2.9. Assume that VVI'{|r is infinite. For i € [1,d], the group {(a;) is a mazimal
cyclic group of W;

Proof. By Proposition 2.6, we can assume that ¢ = 1.

First, assume that k; is finite. In this case, we know by Corollary 2.8 that (a;)
is a maximal finite subgroup of WE Since ap has finite order, any cyclic group
containing a; must be finite and we have the result.

Now, assume that k; is infinite. In this case, we can replace a; by (ag---aq)~! in
Presentation (2.4) to obtain W ~ Z/keZ * - - - x Z/kqZ. The existence of a normal
form in free products of cyclic group then implies that (as---ag) does not admit
(nontrivial) roots. Again, this gives the desired result. O

Proposition 2.10. Assume that W, is infinite. Fori € [1,d] and n € Z*, if a? is
nontrivial, then CW;{-(a?) = (ai).

Proof. 1f W; is affine, then @] is an affine rotation, with exactly one fixed point

P. If g is a positive isometry of the Euclidean plane which centralizes a', then

g.P = P and g is a rotation of center P. The centralizer of a}' in the group of
positive isometries is then isomorphic to R. Since W; is discrete, the centralizer of

a? in Wt is a discrete subgroup of R: it is a cyclic group. Since (a;) C Cjp+(all),
K

we have the result by Lemma 2.9.
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If W; is not affine, hence a Fuchsian group, we can apply [17, Theorem 2.3.2 and
2.3.5], which gives that the centralizer of af in WE is a cyclic group. Again, since
(a;) C CW;(G?), we have the result by Lemma 2.9. O

Proposition 2.11. Let K1 € (Nsp U {co})%, Ky € (N3g U {o0})®. We have
W;{'l & WIE if and only if d1 = ds and K1 = Ko up to permutation.

Proof. The if statement is exactly Proposition 2.6 and we only have to show the only
if part.

If the groups are finite, this can be seen for example in [12, Table 2]. Assume then
that the groups are infinite.
If WI}F1 = ng, the quotients of these groups by the normal closure of their torsion
elements are isomorphic as well. Using Proposition 2.7, these quotients are isomor-
phic to a free group of rank one less than the number of infinite indices in K; and
K5, hence these numbers are equal, say p.
Moreover, Corollary 2.8 identifies the multisets {{k1,1,...,k1,q,—p}} and
{k2,1,- -, ko,do—p}}. Thus, dy —p = do — p so that di = da. We conclude that up to
permutation, the finite parameters of K; and K are the same, which concludes the
proof. O

2.3. Subgroups of alternating polygonal Coxeter groups. In the following
sections, we will be able to study torsion quotients by relating them to particular
subgroups of some group of the form I/VI'(F

In this section, we fix a positive integer d, along with a d-tuple K := (ki1,...,kq)
in (N9 U {oo})4. We also fix another tuple K’ = (K}, ..., k) in (N>1 U {oo})? such
that k] divides k; if k; < oo, and such that k] = co implies k; = oo.

We consider the presentation (2.4) of the group W;;, and we define W (K') to

be the normal closure of the elements af; in W; . By construction, the quotient
Wit /WiE(K') is isomorphic to W, or more precisely to W, where K” is obtained
from K’ by removing the entries equal to 1.

The main purpose of this section is to prove the following result:

Proposition 2.12. If the group W;(K’) is nontrivial, then it is finitely generated
if and only if it has finite index in W;

An easy consequence of Schreier’s lemma is that a finite index subgroup in a
finitely generated group is again finitely generated. In particular, it is sufficient to
show that if W;E(K’) is nontrivial and has infinite index in W, then it is not finitely
generated. In order for W (K') to have infinite index in W}, it is necessary for W
to be infinite.

Let X be either the Euclidean plane or the hyperbolic plane. We can consider a
convex polygon P in X whose dihedral angles are 7 /k; for ¢ € [1,d] (or 0 when k;
is infinite). By [21, Theorem 7.1.3 and 7.1.4], the group generated by the reflections
of X relative to the sides of P is isomorphic to Wi. Moreover, this group admits P
as a fundamental domain for its action on X.

If P is an affine polygon, then W is an affine Coxeter group. By Remark 2.2, we
have K = (3,3,3),(2,3,6),(2,4,4) or (2,2,2,2). We will deal with these cases at the
end of the proof. Otherwise, P is an hyperbolic polygon, and Wi is a discrete group
of isometries of the hyperbolic plane. The subgroup VVI}F is then a discrete group of
orientation preserving isometries of the hyperbolic plane, i.e. a Fuchsian group.

The theory of Fuchsian group is well known, we use results from [21] and [17]
regarding these groups.

The first thing we need to do in this case is to prove that if W (K’) is nontrivial,
then it is infinite. If W, (K’) is nontrivial, then it contains some nontrivial element

w = af’i with k] < k;. If this element has infinite order, then of course W (K”)
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is infinite, so we can assume that w has finite order. By [17, Theorem 2.3.3|, the
centralizer H of w in W;g consists of the elements of W;g whose actions on the
hyperbolic plane fix the same points w. Since H is discrete as a subgroup of WE, it
is a then a cyclic group by [17, Theorem 2.3.5]. Moreover, H is finite since it contains
the finite order element w. Since WI'E is infinite, the index of H in WE is infinite since
H is finite. We conclude by the orbit-stabilizer theorem that the conjugacy class of
w in Wi, which is included in W (K”), is infinite so that W (K') is infinite.

Now, let us show that W5 (K”) is finitely generated if and only if it has finite index
in Wi, By [17, Theorem 3.5.4 and 4.6.1], a Fuchsian group is finitely generated if
and only if it is geometrically finite. By [17, Theorem 4.1.1 and 4.5.1 and 4.5.2], the
area of the fundamental domain of a Fuchsian group is finite if and only if the group
is geometrically finite and of the first kind.

Now, the polygon P has finite hyperbolic area by [21, Exercise 3.5.13], thus W; is
a geometrically finite Fuchsian group of the first kind. By [21, Theorem 12.2.1], W
is nonelementary since it is of the first kind, and thus W (K’) is also a Fuchsian
group of the first kind by [21, Theorem 12.2.14] since it is infinite and normal in W;{'

Since W (K”) is of the first kind, we obtain that it is finitely generated if and only
if the area of a fundamental fomain for Wt (K’) is finite. However, by [21, Theorem
6.7.3], the area of such a domain is the product of the area of P with the index of
WiE(K') in Wi, which terminates the proof in this case.

It remains to prove the result for the case where Wi is affine. First assume that
K =(2,2,2,2). If W;(K’) is nontrivial, then W} /W (K’) = W, is a quotient of
W(;,Q,Z) which is finite. The group W (K”) then has finite index in W}, and there is
nothing to show.

Otherwise, we have d = 3 and K = (ki,kg,k3). If k; = 1 for some i, then
W;/W}?(K') = W};’ is a quotient of a group of the form W&;q), which is always
finite. We can then assume that no k/ is equal to one. In particular if k; is a prime,
then we can assume that k; = k;. We can also assume that K’ # K since otherwise
Wi (K') is trivial and there is nothing to show.

o If K = (3,3,3), then there is no remaining possibility for K’ and there is
nothing to show.

o If K =(2,3,6), then K’ = (2,3,2) or (2,3,3). In both cases Wit /W (K')
is finite by Remark 2.2 and there is nothing to show.

o If K = (2,4,4), then K' = (2,2,2),(2,2,4) or (2,4,2). In all cases the
quotient Wt /Wt (K') is finite by Remark 2.2 and there is nothing to show.

Now that the proof of Proposition 2.12 is completed, we finish this section with a
corollary regarding the center of the group Wt (K').

Corollary 2.13. Assume that W is infinite. If W (K') is nontrivial, then its
center is trivial.

Proof. If W (K') is nontrivial, then it contains some nontrivial element afi. Up to
permuting the a; (using Proposition 2.11), we can assume that alfl is nontrivial.

Now, the center of Wi (K’) is included in the centralizer of a]fll in W, which is
equal to (a1) by Proposition 2.10. Assume that Z(W;(K’)) contains a nontrivial
element z. We have z = a for some integer n. Any x € W (K’) lies in the
centralizer of z in W}, and thus z € (a;). We then have Wi (K') C (a;).

Now, as during the proof of Proposition 2.12, the group WI}F is a discrete isometry
group for X either a euclidean or hyperbolic plane. Moreover, a fundamental domain
for the action of W; on X is a convex polygon P.

The group Wi is generated by the reflections along the sides of P, and the elements
ai,...,aq are rotations around the vertices of P. Let v; (resp. wv2) be the vertex
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of P which is a center for the rotation aj (resp. ag2). The element alfl is also a

rotation centered at vy. Since vy # wvo, the point v; is not a fixed point of ao, and

K, 1. . : . . K
thus aza;'a; lis a rotation around a point different from v;. In particular, asa,’ a, !

. : K . _
is not a power of ay. Since asa;’a, = WI'(F(K’), this is a contradiction. 0

3. GENERALIZED J-GROUPS

The family of J-groups was first defined in [1], where the authors proved in partic-
ular that the finite groups in this family are precisely the complex reflection groups
of rank 2. In this section, we give a generalization of the definition of J-groups and
we prove some group-theoretic results in this new setting.

For the remainder of the section, fix a positive integer p, along with a p-tuple
K = (k1,...,kp) in (N>2 U {oo})?. We also fix another tuple K’ = (ki,... k) in
(N>1)P such that k] divides k; for each i (by convention, we say that every nonzero
integer divides o).

3.1. Definition, reflections.

Definition 3.1 (Generalized J-groups). The group J(K) is defined by the group
presentation

<51,...,sp\5152~--sp252~--8p31 = =5p81 - Sp_1, 5, = lif k; <oo>
It is called a generalized parent J-group.
. . 4 kL .
The generalized J-group J(II((/) is defined as the normal closure of {slfl, .., Syt in
J(K).

By extension, we will often consider groups of the form J(K) with elements of
K possibly equal to 1. Considering the above presentation, this is equivalent to
considering J (K ), where K is obtained from K by removing the entries equal to 1.

Since k] divides k; for all ¢, we have a natural surjective morphism J(K) — J(K’).
The kernel of this morphism is precisely the generalized J-group J ( Ilg,)

Remark 3.2 (The case k; = co). The definition of generalized J-group also makes
sense if we allow K’ to contain infinity elements. Assume for instance that k;, =
k, = oo, and let z := s1---s,. By looking at the presentation of J(K), we can
show that J(K) decomposes as a direct product (si,...,s,—1) X (z). Moreover, the
group (S1,...,Sp—1) is a free product of the cyclic groups (s;). The group J(II((,) is

/ k!
then the normal closure of slfl, RPN I P2tin (s1,...,8p—1). We obtain that J([I((,) is

also a (possibly infinitely generated) free product of cyclic groups. We chose not
to consider this case here, since on the one hand free products of cyclic groups are
well-studied, and on the other hand it would require to specify particular cases for
several theorems below.

Just as in the case of J-groups, we have a natural notion of abstract reflections in
generalized J-groups. This definition imitates the definition originally given in [12]
in the case of toric reflection groups, which are particular (classical) J-groups.

Definition 3.3 (Reflections). The set of reflections of the generalized parent J-
group J(K) is defined as the set of all conjugates of nontrivial powers of s1,...,s,
in J(K). Tt is denoted by R(J(K)).

The set of reflections of the generahzed J-group J ( K,) is defined as the set of all
conjugates of nontrivial powers of s1 S s’; in J(K). It is denoted by R(J( ))-

Notice that R(J(K/)) is not the set of conjugates of the sii in J(II((,), but rather in
the generalized parent J-group J(K). In particular, while computing the conjugacy
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classes of reflections in a generalized parent J-group is rather easy, it is more difficult
in an arbitrary generalized J-group (see Proposition 3.18).

Another reasonable definition for the set of reflections of a generalized J-group
would be the intersection with said J-group of the set of reflections of its parent gen-
eralized J-group. The following two lemmas show that the two definitions coincide.

Lemma 3.4. Let i € [1,p], and let n € N. The reflection s belongs to J([I({,) if and
only if n is a multiple of k.

Proof. The if part is immediate by definition of J ( II({,) Conversely, let 5; be the image
of s; in J(K'). Since J(Ilg,) is the kernel of the projection map J(K) — J(K'), we
have s € J ( IIE,) if and only if 5;" is trivial. It is then sufficient to show that the
order of §; is k}. By construction, we know that this order divides k}. Conversely, we
can compute the abelianization of J(K') using its defining presentation. We obtain
that this abelianization is a direct product of p cyclic groups Z/k.Z. In particular,
the order of the image of 5; in this abelianization in k., whence the order of 5; is
precisely k., which finishes the proof. O

Lemma 3.5. We have R(J(f,)) = R(J(K))NJ (%)

Proof. Since reflections in J ( [I((,) are in particular reflections in J(K'), we have the
direct inclusion. Conversely, let 7 € R(J(K)) be a reflection which belongs to J ( II((,)
By definition, there is an element g € J(K) which conjugates r to some nontrivial
reflection s]" of J(K). Since J(Ilf,) is normal in J(K), we have s" € J(II((,). By
Lemma 3.4, we have s € R(J(;({,)) and thus r € R(J([I((,)) as we wanted to show. [

Since a generalized J-group is defined as the normal closure of a set of reflections
in its generalized parent J-group, it is generated by reflections. However, it is not
obvious at this stage that it can be generated by a finite number of reflections. In
fact this will only be true for a particular family of generalized J-groups which is
introduced below (Definition 3.10).

We now naturally extend the notion of reflection (iso)morphisms introduced in
[12]:

Definition 3.6 (Reflection isomorphism). Let J;, Jo be two generalized J-
groups. A group morphism .J; % Jo is a reflection morphism if o(R(J1)) C R(Jo) U
{15,}. Moreover, the groups J; and Jy are said to be reflection isomorphic if there
exists a group isomorphism J; — Jo which restricts to a bijection between R(Jp)
and R(J2). In this case, we write

Hy =Rer Ho.

An important fact is that the ordering of the tuples K and K’ does not impact
the reflection isomorphism type of the generalized J-group J ( II{(/):

Proposition 3.7 (Permutation of parameters). Let 0 € S, and write 0(K) =

(ko(1), ko(2)s - - - » kopy)) (and similarly for o(K')). The groups J(Ifé) and J(g((ll((,))) are

reflection isomorphic.

Proof. Since generalized J-groups are normal closures in generalized parent J-groups,
it is enough to prove the result for generalized parent J-groups.

If p = 1, there is nothing to show. If p = 2, the result is obtained by considering the
automorphism swapping s; and sa.

We assume from now on that p > 3. Since S, is generated by the transposition
s:=(12) and the cycle c:= (12 --- p), it is enough to show the result for these two
permutations. Writing ¢1,. .., %, for the generators of J(K), we obtain a well-defined
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morphism from J(K) to J(s(K)) by setting
ty! ifi =1,
sirr Qty ! if i = 2,
(t3---tic1)ty '(t3---timy) ™1 if i € [3,p].

Exchanging the roles of s; and t; yields a morphism from J(s(K)) to J(s*(K)) =
J(K), which is the inverse of the first morphism. Moreover, a(s1) is conjugate to
t5 ', a(s2) is conjugate to t; ! and a(s;) is conjugate to t; ! for i € [3,p], so that o
is a reflection isomorphism.

Now, by definition of J(c¢(K)), a reflection isomorphism v : J(K) — J(c(K))
is obtained by sending s; to t;1 for i € [1,p — 1] and by sending s, to ¢;. This
concludes the proof. O

3.2. Determination of finite generalized J-groups. One of the main results of
[1] is the determination of finite J-groups. More specifically, the authors show that
the family of finite J-groups coincide with the family of complex reflection groups of
rank 2. In this section, we generalize this result to arbitrary generalized J-groups.
If p < 2, then J(K) is finite if and only if the elements of K are all finite. In
particular, since the elements of K’ are finite, the group J(K') is finite and J(}({,)

has finite index in J(K). In particular, J(g,) is finite if and only if its generalized
parent J-group is also finite.

Obtaining a similar result in the case p > 3 is possible but more intricate. Just
as J-reflection groups are related to triangle Coxeter groups (see for instance [14,
Theorem 1.5|), generalized J-groups are related to polygonal Coxeter groups. More
precisely, we have the following result:

Proposition 3.8 (Center of parent generalized J-groups). Assume p > 3.
The center of J(K) is generated by the product s152---s,. Moreover, the quotient
J(K)/Z(J(K)) is isomorphic to the alternating polygonal Coxeter group W .

Proof. First, s152---sp, is central in J(K') (it is invariant by conjugation by any of
the s;’s). Using Corollary 2.4, the correspondence s; — a; for i € [1,p] induces an
isomorphism between J(K)/(s1---s,) and W;-. Since the latter group has trivial
center by Corollary 2.5. We deduce that Z(J(K)) C (s1s2---sp) C Z(J(K)), which
concludes the proof. (]

This result allows us to determine which generalized parent J-groups are finite,
by relating them to alternating polygonal Coxeter groups.

Lemma 3.9. Assume p > 3. The group J(K) is finite if and only if W, is finite.
This is equivalent to having (up to permutation) K = (2,2,1) for | > 2 or K €
{(2,3,3),(2,3,4),(2,3,5)}.

Proof. By Corollary 2.4, there is a natural quotient J(K) — W, sending s; to a;.
Therefore, if W;{' is infinite, then so is J(K). As said in Remark 2.2, the group
Wi (hence W;g) is finite if and only if K belongs up to permutation to the set
{(2,2,1),(2,3,3),(2,3,4),(2,3,5)} (with { > 2. The corresponding groups J(K) are
known to be finite [1, Theorem 1.2], this finishes the proof. O

In order to obtain a complete description of finite generalized J-groups, we intro-
duce the definition of finite-type generalized J-group.

Definition 3.10 (Finite-type). A nontrivial generalized J-group J(I[g,) is said to
have finite type if the group J(K') is finite. Otherwise, it is said to have infinite type.

The main interest of this definition is that it coincides with the family of finitely
generated generalized J-groups:
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Proposition 3.11. A nontrivial generalized J-group is finitely generated if and only
iof it has finite-type. Moreover, a finite-type generalized J-group is finitely presented.

Proof. Let J(II((,) be a generalized J-group. If J(II({,) has finite index in J(K), then
it is finitely presented since J(K) is finitely presented (this is a consequence of the
Reidemeister Schreier method).

Conversely, assume that J ( II((,) has infinite type. If p < 2, then since the elements
of K’ are all finite, the group J(K') is always finite and J([[((,) has finite-type. We
can then assume that p > 3.

Consider the morphism J(K) — W;- given by Proposition 3.8. The image of
J( Ilg') under this morphism is the group W (K’). If K’ contains 2 or less entries
different from 1, then J(K') is a finite abelian group and J([I((,) has finite type. We
can then assume that K’ contains at least three entries different from 1, and we can
apply Lemma 3.9. We obtain that the group J(K)/J(Ilg,) ~ J(K') is finite if and
only if the group W /Wt (K') ~ W}, is finite. Thus J([I((,) has finite index in J(K)
if and only if W (K') has finite index in W.

If J( ][({,) is nontrivial and has infinite index in J(K), then W;t(K’) is nontrivial
and has infinite index in W;r. The group W (K’) is thus infinitely generated by
Proposition 2.12. Since J({é) surjects onto W (K'), we have the result. O

Remark 3.12. Notice that the above proposition fails if we allow the elements of
K’ to be infinite. For instance, the group J( T g) is isomorphic to Z but has infinite

index in its parent generalized J-group Z2.

Remark 3.13. The above proposition applies in particular to the case p = 3. It
answers |16, Question 1.1.2] about finite generatedness of (classical) J-groups. How-
ever, even if we showed that a finite-type generalized J-group is finitely generated,
we have not yet showed that it can be generated by a finite number of reflections.
This will be seen in Section b, where we realize all finite-type generalized J-groups
as torsion quotients of J-braid groups (see Remark 5.3)

Corollary 3.14 (Finite generalized J-groups). A nontrivial generalized J-group
1s finite if and only if its generalized parent J-group is finite.

Proof. 1f the generalized parent J-group of a generalized J-group is finite, then the
generalized J-group is finite as a subgroup of its generalized parent J-group.
Conversely, assume that J ( II{(/) is a nontrivial finite generalized J-group. In par-

ticular, J(II((,) is finitely generated. By Proposition 3.11, the index of J({g,) in its

generalized parent J-group is finite. Since J ( II((,) is finite, this implies that its gener-
alized parent J-group is also finite. Il

Combining this corollary with Lemma 3.9, we obtain a complete classification of
finite generalized J-groups.

Corollary 3.15. A nontrivial generalized J-group is finite if and only if it is reflec-
tion isomorphic to a complex reflection group of rank two. Conversely, every complex
reflection group of rank 2 is realized as a finite generalized J-group.

Proof. Using Corollary 3.14 and Lemma 3.9, the generalized J-group J ( II((,) can only
be finite if p < 3. If p < 2, the finite generalized J-groups are direct product of
finite cyclic groups, which are (reducible) rank two complex reflection groups. If
p = 3, then we know that the parent J-group J(K) is a complex reflection group
(see [1, Theorem 1.2| or simply [3, Tables 1-3]). The considered J-group is then a
complex reflection group as the normal closure in a finite reflection group of a set of
reflections. The converse statement that every complex reflection group of rank 2 is
realized as a finite J-group is shown in [1, Theorem 1.2]. O
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3.3. Conjugacy of reflections. We now study the conjugacy of reflections in gen-
eralized J-groups. First, using the description of centralizers obtained in alternating
polygonal Coxeter groups, we can describe the centralizer of reflections in parent
generalized J-groups.

Proposition 3.16 (Centralizer of a reflection). Let i € [1,p], and let n € Z* be

such that a is nontrivial. The centralizer of al in J(K) is abelian and generated by
a; and Z(J(K)).

Proof. If J(K) is abelian, then J(K) = Z(J(K)) is the centralizer of any element
and the result is immediate. If p > 3 and J(K) is finite, then W := J(K) is an
irreducible complex reflection group of rank 2 and a; is a reflection of W. The center
of J(K) is cyclic and generated by z := s;--- s, after Proposition 3.8. The group
H := (a;, z) is an abelian group with order k;|Z(W)|. Moreover, H is included in
the centralizer of @', and it is sufficient to show that this centralizer has cardinality
K\ Z(W)].

In the Shephard-Todd notation, we have either W = G(21,2,2) for | > 2, of W €
{G7,G11,G19}. In each case, we have |W| = |Z(W)|%. If K € (2,3,3),(2,3,4) or
(2,3,5), the result is obtained by computer (using for instance the CHEVIE package
of GAP3 [CHE]). If K = (1,2,2) for some [ > 2, then J(K) ~ G(2[,2,2). More
precisely, the identification is given by

e2im/l 0 1 0 etm/l
‘“H( 0 1)’ “2H(1 0)’ “3H(e-iﬂ/l 0 )

The centralizers of these elements and their nontrivial powers are easily computed
using this representation, which gives the desired result.

Lastly, assume that p > 3 and that J(K) is infinite. Let g € Cj(x(a}'). writing
7 J(K) — Wj to denote the canonical quotient, we then have 7(g) € C’W; (m(a;i)™).
Now, using Lemma 3.9, the group W’ is infinite since J(K) is as well, hence Propo-
sition 2.10 applies. This shows that 7(g) € (m(a;)). Since ker(m) = (a1az2---ap), in
turn equal to Z(J(K)) by Proposition 3.8, we obtain that g € (a;,a1az---ap,). This
concludes the proof. O

Using this result, we can describe the conjugacy classes of reflections in a general-
ized J-group. As usual, we begin with the case of generalized parent J-groups.

Lemma 3.17. Two reflections r,r’ € J(K) are conjugate in J(K) if and only if we
can write 7 = gstg~t and ' = hsPh~! with g,h € J(K) and n € [1,k; — 1].

Proof. By definition of R(J(K)), we can write r = gs?'g~! and 1/ = hsg»”h_1 with
i,j € [1,p] and n € [1,k; — 1], m € [1,k; — 1]. The two reflections r and 7’ are then
conjugate in J(K) if and only if the reflections si' and s7* are conjugate. If j = i

and m = n, then s = s and r,r" are conjugate in J(K). Conversely if s and

si" are conjugate, then thjeir images in the abelianization A of J(K) are equal. By
Definition 3.1, A decomposes as a direct product Z/k17Z x - - - X Z/k;Z, generated by
the images of the s;’s. If the images of s} and s7" are equal, we then obtain ¢ = j
and m = n modulo k;. Since m,n € [1,k;] by assumption, we have m = n as we

wanted to show. O

In particular, we see that a reflection is never conjugate to any of its powers other
than itself. For linear reflection groups this is easily shown by looking at eigenvalues,
but here we have the result without using a linear representation of generalized J-
groups.

Proposition 3.18 (Conjugacy classes of reflections). Let QQ denote the quotient
of J(K') by the image of Z(J(K)) under the projection J(K) — J(K').



16

Fori € [1,p], lets; denote the image of s; in Q. Let n € N be such that s} € J([I((,)
18 nontrivial.
(a) For g,h € J(K), the elements gsl'g~' and hsP'h™! are conjugate in J([If,) if
and only if the images of g and h in Q lie in the same left (5;)-coset.
(b) There is a natural bijection between the set of conjugacy classes in J([I((,) of
reflections conjugate to s in J(K) and the left (5;)-cosets in Q.

Proof. Point (b) is a direct consequence of point (a), we thus only have to prove
the latter. Since J(;g,) is normal in J(K), it is sufficient to consider the case where
h =1. Let r := s}

By definition, ~ and grg~*

are conjugate in J ( II({,) if and only if there is an element
of J(II((,) which conjugates r to grg~!. The set of elements of J(K) which conjugate r
to grg~! is the left coset 9C 5(k)(r). The intersection gC j(x)(r) N J([I((,) is nontrivial
if and only if there is some z € C () (1) whose image in J(K') is equal to that of g.
By Proposition 3.16, the centralizer Cy(g)(r) is generated by r and Z(J(K)). Thus
r and grg~! are conjugate in J(II({/) if and only if there is some m € Z*, z € Z(J(K))
such that the images of g and of s["z in J(K') are equal. Taking the quotient by the
image of Z(J(K)) in J(K). We obtain that » and grg~! are conjugate in J(II((,) if
and only if there is some m € Z™ such that the image of g in @ in 5;™. This is the
desired result. O

The fact that Proposition 3.18 gives a complete description of the conjugacy classes

of reflections in J(II((/) comes from Lemma 3.17: if r,7' € R(J([[((,)) are conjugate in
J(]I({,), then they are in particular conjugate in J(K). By Lemma 3.17, this implies
that we are in the situation of Proposition 3.18.

Corollary 3.19 (Counting conjugacy classes of reflections). Let QQ denote the
quotient of J(K') by the image of Z(J(K)) under the projection J(K) — J(K'). For
i € [1,p], let 5; denote the image of s; in Q.
(a) The group Q is finite if and only if J({((/) has finite-type.
(b) In this case, the number of conjugacy classes of reflections in J(;f,) 1S gven
by
ki /K —1

k3

YYD RG]

i=1 j=1

Proof. (a) If J(II((,) has finite-type, then @ is finite as a quotient of the finite group
J(K"). Conversely, assume that J(Ifé) has infinite type. We can assume that p > 3,
since p < 2 forces J (][((,) to have finite-type. Moreover, we can assume that K’
contains 3 or more entries different than 1, since J(K”) is finite and abelian if this is
not the case. The center of J(K) is then generated by s;---s, by Proposition 3.8,
and the group @ is W;,. We then conclude by Lemma 3.9 that if J([I((,) has infinite
type, then J(K') and W}, are infinite.

(b) After Lemma 3.17, every reflection in J(Ifg,) is conjugate in J(K) to exactly
one reflection of the form s for n € [1, k; — 1]. Moreover, by Lemma 3.4, n must be
a multiple of k/. The number of conjugacy classes of reflections in J ( [I((,) which are
conjugate to s is given by Proposition 3.18 (b). O

3.4. Center and torsion elements. As a consequence of the determination of
centralizers of reflections, we can determine the center of arbitrary generalized J-
groups. This was already proven by the second author in [16, Theorem 2.2.29| for
the family of J-reflection groups (which are particular (classical) J-group).
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Corollary 3.20 (Center of generalized J-groups). The center of J(II((,) is given
by Z(J(II((,)) = J(I[({,) NZ(J(K)). Moreover, if J(I[((,) is nontrivial, it is abelian if
and only if J(K) is also abelian.

Proof. If p < 2, then J(K) is abelian and the result is immediate. Moreover, if J(K)
is finite, then we are in the well-known case of irreducible rank two complex reflection
groups.

Assume thus that p > 3 and that J(K) is infinite. Consider the natural morphism
J(K) — W, This morphism restricts to a surjective morphism 7 : J(II((,) —
Wi (K'). Since Wit (K') has trivial center by Corollary 2.13, the center of J(II({,) is
included in ker . Since the kernel of the morphism J(K) — W is Z(J(K)), the
kernel ker 7 is the intersection of J(}g,) with Z(J(K)). We then have Z(J((Ilf,))) -
J(Ilg,) N Z(J(K)). The other inclusion is immediate.

Now, if J(K) is abelian, then J([I((,) is abelian as a subgroup of J(K). Conversely,
if J(K) is nonabelian, then p > 3 and Z(J(K)) is cyclic and generated by aj - - - ap.
However, J ( II({,) contains a nontrivial reflection, which is noncentral by Proposition
3.18. We then have Z(J(II((,)) =Z(J(K))N J(I[((/) - J(Ifé) and J(I[((/) is not abelian.
Moreover, if p > 3, the group J(K) is not abelian since its inner automorphism group
WE is non-trivial. This concludes the proof. O

By Corollary 3.14, finite generalized J-groups have finite-type. Thus a generalized
J-group is either finite, or infinite and finite-type, or infinite-type. Moreover, theses
cases are mutually exclusive. We will show that these cases can be recovered by only
considering the centers of generalized J-groups.

First, we show that finiteness of a generalized parent J-group can be characterized
by only considering its center. This result was originally showed by the second author
[16, Corollary 2.2.37] for the case p = 3.

Proposition 3.21 (Order of center of parent generalized J-groups).
A generalized parent J-group is finite if and only if its center is finite.

Proof. 1f p < 2, the group J(K) is abelian so that the result is trivial.

If p = 3, the statement is that of [16, Corollary 2.2.37].

Assume now that p > 4 (in which case J(K) is always infinite), we have to show
that Z(J(K)) is infinite. If L is a tuple of length p’ > 3 obtained from K by deleting
entries, then there is a natural quotient J(K) — J(L) which induces a quotient
Z(J(K)) — Z(J(L)). It is then sufficient to show that Z(J(L)) is infinite.

Assume that p = 4. If K contains a subset L of cardinal 3 such that J(L) is infinite,
then case p = 3 applies and Z(J(L)) is infinite. All remaining cases for p = 4 are of
the form (2,2,n,m) with n,m > 2. By [16, Theorem 2.2.10 and Remark 3.1.7], we
have J(2,2,n,m) = J(2 % %), in which case the result follows from [16, Corollary
2.2.37].

If p > 5, then K admits a subtuple L of length 4. The group J(L) is infinite in this
case by Proposition 3.8, and Z(J(L)) is infinite by the case p = 4. This concludes
the proof. O

Proposition 3.22 (Order of center of generalized J-groups).
Let J(II((,) be a generalized J-group.
o If J(II({,) 18 finite, then its center is either a finite cyclic group or a direct
product of two finite cyclic groups.
o [f J(Ifg,) 18 infinite and finite-type, then its center is infinite cyclic.
o If J(I[{(,) is infinite-type, then its center is trivial (and J(II((,) ~ WH(K')).

Proof. By Corollary 3.14, a generalized J-group is finite if and only if its generalized
parent J-group is finite. If this is the case, then we are in the well-known case of
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rank two complex reflection groups. This covers the first case.

If J([I((,) is infinite and finite type, then J(K) is infinite and J(K’) is finite. We
know by Corollary 3.20 that Z(J (%)) = J(f) N Z(J(K)) and by Proposition 3.21
that Z(J(K)) is infinite cyclic. Thus, since J(K') is finite, the group J([Ig,) contains
at least one non-trivial element of Z(J(K)) (otherwise the quotient J(K)/J([I((,) =
J(K') would contain an element of infinite order, namely the image of the generator
of Z(J(K)) ). This covers the second case.

If J([I((,) is infinite-type, then J(K') is infinite. The group J([I((,) cannot contain a
central element of J(K). Indeed, if it did, the image of the generator of Z(J(K))
in J(K)/J(II((,) =~ J(K’) would have finite order, which is false by Proposition 3.21.
This shows that Z(J(II((,)) = 1. We conclude in particular that if J(K') is infinite,

the restriction of the quotient J(K) — W to J(}g,) is injective. This concludes the
proof. O

We finish this section by giving a complete description of the torsion elements in
a infinite generalized J-group.

Corollary 3.23 (Torsion in generalized J-groups). The torsion elements of an
wmnfinite generalized J-group are precisely its finite order reflections.

Proof. Since J([[{(,) NR(J(K)) = R(J(II((,)), it is enough to show the result for J(K).

If p <2, then J ( I[((,) is a direct product of cyclic group, which is infinite if and only if
at least one of the factors is infinite cyclic. The result is immediate in this case. Now,
assume that p > 3, and write 7 : J(K) — W; for the natural quotient. If z € J(K)
is a torsion element, 7(x) is a torsion element in W;t. Moreover, by Proposition 3.21,
x is not central, thus 7(z) is nontrivial. By Proposition 2.7, w(x) is conjugate to a
nontrivial power of some m(a;) with k; < oo for ¢ € [1,d]. Up to conjugating = we
can assume that m(z) = m(a;)? for ¢ < k;. We then have z = af(ajaz---ap)" for
some integer r. By Proposition 3.21, the order of ajas - - - a, is infinite, which forces

r =0 since z is a torsion element. We obtain = = a, as we wanted to show. O

4. J-BRAID GROUPS AND TORSION QUOTIENTS

4.1. Reminders on J-braid groups. In [14], the second author studies a particular
family of (classical) J-groups called J-reflection groups, which contains in particular
all finite J-groups (i.e. all complex reflection groups of rank 2). Later in [15], the
second author introduced a family of so-called J-braid group, naturally attached
J-reflection groups. This construction generalizes the definition of braid group of
complex reflection groups of rank 2. The definition of J-braid group given in [15] is
via a presentation by generators and relations involving two positive integers n, m.
In [15], the integers n,m were assumed to be coprime. This assumption was later
removed in [13], giving rise to generalized J-braid groups, attached to generalized J-
reflection groups. For readability, we will call these groups J-braid groups if needed.

For the remainder of this section we fix n,m € N3 and we write m = gn +r with
0<qgand 0 <r <n-—1. We also define d = n A m.

Definition 4.1 (J-braid groups).
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e The group Bj(n,m) is defined by the following presentation:
(1) Generators: {z1,...,%n, Yy, 2};
(2) Relations:
XT1-TpYz = 21 Tpy, (4.1a)
Tip1 - Tpy20t g wi = 2 Y207 ey - me, VI i <n—7, (4.1Db)

Tia1 - Tpy20lmy - Tjup o = X5 Tpyzdizy - Tie po1, Vn—r+1 <0 < n,
(4.1c)

where indices are taken modulo n and where § denotes z1 - - - £, y.
e The group B*(n,m) is the quotient of B (n, m) by the normal closure of y.
e The group B, (n,m) is the quotient of B} (n, m) by the normal closure of z.
e The group B(n,m) is the quotient of B;(n, m) by the normal closure of {y, z}.

Remark 4.2. By definition, in the presentation of B(n,m), only relations of the
form (4.1b) and (4.1c) remain, and they state that the product ;- -z, (with
indices seen mod n) does not depend on i. In other words, the presentation given for
the group B(n, m) coincides with the presentation given in [11]| of the circular group
denoted there by G(n,m). Circular groups then appear as particular examples of
J-braid groups.

This combinatorial definition of J-braid groups was justified by the following the-
orem:

Theorem 4.3. [16, Theorem 2.2.10 and Remark 3.1.7] Let b,c € Nxy1. The group

J(ktnem) s jsomorphic to Bi(n,m)/{(zf, ... ak y°, 2%)).

In the following sections, we are going to consider all quotients of J-braid groups
obtained by adding torsion to the generators. For readability, it is convenient to
name the conjugates of the generators in a J-braid group. We follow the notation of
[13]:

Definition 4.4 (Braid reflections). We call braid reflections the conjugates of the
generators of B} (n,m), B*(n,m), Bi(n,m) and B(n,m).

Notice that we did not give a topological meaning to J-braid groups (yet). The
terminology of braid reflections relies (for now) entirely on the analogy with the case
of J-braid groups which are complex braid groups. We thus chose to use the term
braid reflections instead of braided reflection.

By construction of J-braid groups, we have a commutative square of groups

BE(n,m) N B*(n,m)

Zzll lzzl (4.2)

B, (na m) F) B(nv m)
Contrary to [15] and [13], we do not make the assumption that m > 2 (resp. n > 2)
in order to define B.(n,m) (resp. B*(n,m)). In particular, the above square is
always defined, but we need to be precise on the results involving groups B*(1,m)
and B, (n,1).
Presentation (4.1) reads

Bi(L,m) = (z,y,2 | xyz = zzy, yz(ey)™ 'z = zyz(zy)™ ")

so that B*(1,m) is isomorphic to Z2. Now, there exists an isomorphism between
B*(1,m) and Bi(m,1) which sends y to z (see Corollary 4.17), hence Bi(m,1) is
again isomorphic to Z2. Notice that if 1 € {n,m} we also have B(n,m) = Z by [11,
Corollary 2.11].
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We mentioned above that circular groups are particular cases of J-braid groups.
In fact, the family of J-braid groups coincides (up to abstract group isomorphism)
with the family of circular groups:

Theorem 4.5 (Isomorphism type of J-braid groups). [16, Theorem 3.1.23 and
3.1.31]

o The group B:(n,m) is isomorphic to B(d+ 2,d + 2).

e The group Bi(n,m) is isomorphic to B(d+ 1, (d + 1)m/).

e The group B*(n,m) is isomorphic to B((d + 1)n’,d + 1).
Note however that these various isomorphisms do not send braid reflections to braid
reflections in general.

Proof. The only cases which are not covered in [16, Theorem 3.1.23 and 3.1.31] are
the isomorphisms B, (n, 1) ~ B(2,2) ~ B*(1, m), which we already showed above. O

Using this result, it is rather easy to determine the center of J-braid groups:

Corollary 4.6 (Center of J-braid groups). [16, Corollary 3.1.35]

/. m /. n
Let m' .= 7 and n' = 7

e The center of BX(n,m) is infinite cyclic and generated by om

e The center of B*(n,m) is infinite cyclic and generated by (5m/z"/, except for
B*(1,m) ~ Z2.

e The center of Bi(n,m) is infinite cyclic and generated by o™ except for
Bi(n,1) ~ Z2.

e The center of B(n,m) is infinite cyclic and generated by 8™ except if n =1
orm =1 orn=m=2, in which case B(n,m) is abelian.

Proof. The fourth case was obtained in [11, Corollary 2.11], thus it only remains to
observe the result for B*(1,m) and for B.(n, 1), which is immediate. O

Lemma 4.7 (Conjugacy classes of braid reflections). The pairs of conjugate
generators of Bi(n,m) (resp. B*(n,m),Bi(n,m),B(n,m)) are exactly the pairs of
the form {x;, ziyrq} for k € N (where we see the indices mod n).
In particular, a complete set of representatives of conjugacy classes of braid reflections
15 given by

o {z1,...,2q,y,2} for Bi(n,m).

o {z1,...,xq,2} for B*(n,m).

o {z1,...,xq,y} for Bi(n,m).

o {z1,...,xq} for B(n,m).

Proof. Consider the presentation of Bf(n,m). For i € [1,n — r], Equation (4.1b)
implies that x; is conjugate to x;4, by zit1 - T < Tjyr—1. Similarly for
i € [n—r+ 1,n], Equation (4.1c) implies again that x; is conjugate t0 jqr_p.
Seeing the indices mod n, we obtain that z; is conjugate to z;4, for all i € [1,n].
Since the ged of n and r is equal to that of n and m (i.e. to d), we obtain that x; g
is always conjugate to x; for i € [1,n] and k € N. Since this holds in Bf(n,m), it
also holds in its quotients B*(n,m), Bi(n,m) and B(n, m).

Conversely, the presentation of B}(n,m) induces a presentation of its abelianiza-
tion A. We obtain that A is generated by Z1,...,%, ¥,z with the only relations
being ©; = iy, for i € [1,n —r] and &; = x5y, for i € [n —r + 1,n]. The group
A is then free abelian generated by #1,...,24,¥,z. Since two conjugate elements in
B (n,m) must be identified in A, we deduce that no two elements of {z1,...,24,y, 2}
are conjugate in B (n, m), which finishes the proof in this case. Similar computations
give the abelianization of B*(n,m), B«(n,m) and of B(n,m), which gives the result
in these cases. U
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4.2. Torsion quotients of J-braid groups. In this section we fix two positive
integers n, m, and we let d := nAm denote the ged of n and m. We also fix a d-tuple
K := (ki,...,kq) of elements in N>oU{oo}, along with two elements b, ¢ € N>oU{oo}.
Definition 4.8 (Torsion quotient).

e The group B} (n,m; K, b, c), defined as the quotient of B} (n, m) by the normal

closure of {xlfl, ... ,xsd,yb, 2¢} is called a torsion quotient of Bf(n,m).

e The group B*(n,m; K, c), defined as the quotient of B*(n, m) by the normal
closure of {z%, ... ,Z‘Sd, 2¢} is called a torsion quotient of B*(n,m).

e The group By (n,m; K,b), defined as the quotient of B,(n,m) by the normal
closure of {z%) ... ,xsd,yb} is called a torsion quotient of B.(n,m).

e The group B(n,m; K), defined as the quotient of B(n,m) by the normal
closure of {z%) ... ,xsd} is called a torsion quotient of B(n,m).

By construction of torsion quotients, square (4.2) induces a square between torsion
quotients:

B:(n,m; K,b,c) =, B*(n,m; K, c)

z:ll Lz:1 (4.3)

B.(n,m; K,b) —= B(n,m; K)

where we abusively denote by y and z the respective images of y and z in the torsion
quotients.

At first glance, we only imposed torsion relations on the first d generators x; of
the presentation of a J-braid group in order to define torsion quotients. However,
by Lemma 4.7, two generators x;,; of a J-braid group are conjugate if and only if
¢ and j are equivalent modulo d. In particular, the image of x4, in the associated
torsion quotient has order k; for all i € [1,d].

Conversely, for (ki, ks, ..., k,) € Nsg U {00}, the quotient of a J-braid group by
the relations xfl =1 for all i € [1,n] (along with y* = 2¢ = 1 if needed) is easily
shown to be a torsion quotient in the sense of Definition 4.8.

Remark 4.9. We could theoretically allow for b = 1 or ¢ = 1 in the definition of
torsion quotient. In this case every torsion quotient could be described as a torsion
quotient of B}(n,m), with for instance B.(n,m; K,c) = Bi(n,m; K,1,c).

Remark 4.10. Assume that d = 1. In this case, the tuple K is actually a single
element k. The presentation of B (n, m;k,b, ¢) coincides with the presentation of the
J-reflection group W (k,bn,cm) given in |14, Theorem 2.29]. More generally, if K =
(k,...,k), then the presentation of B} (n,m; K,b,c) coincides with the presentation
of the generalized J-reflection group W (k,bn,cm). This also holds if b = 1 or if
¢ = 1. Torsion quotients of J-braid groups then generalize generalised J-reflection
groups.

Definition 4.11 (Reflections). Let B be a J-braid group and let W be a torsion
quotient of B. The nontrivial powers of conjugates of the images in W of the braid
reflections of B are called the reflections of W. We denote the set of reflections of W
by R(W). We say that two torsion quotients W and W’ are reflection isomorphic if
there exists a group isomorphism ¢ : W — W' such that o(R(W)) = R(W’).

Remark 4.12. The description of the conjugacy classes given in Lemma 4.7 extends
to all torsion quotients of J-braid groups, as the proof carries out word by word.

4.3. Embedding results for torsion quotients of J-braid groups. In this sec-
tion we fix two positive integers n, m, and we let d := n Am denote the gcd of n and
m. We write m = gn + r the euclidean division of m by n. We also fix a d-tuple
K := (ki,...,kq) of elements in N>oU{oo}, along with two elements b, ¢ € N>oU{oo}.
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Notation 4.13. We will write d - K for the dp-tuple (k1,...,kp, k1,k2...,kp) ob-
tained by repeating K d-times. Moreover, for k € N U {o0}, d - k will denote the
d-tuple d - (k).

Our main tool for studying torsion quotients of J-braid groups is the following
theorem, which provides an embedding from B (pn,pm;d - K,b,c) to J(K,bn,cm)
which maps reflections to powers of reflections.

Theorem 4.14 (Embedding of J-braid group). The correspondance
= Sp—‘,—lsZ p+1 for le [[Lpn]] and :jp+27 ] € [[Ovn - 1]]72 € [[Lpﬂv
y = 5p+17
Z = Splho.
induces an injective morphism from Bi(pn,pm,d - K,b,c) to J(K,bn,cm), whose
image is the normal closure of {s1,...,5p, 51,542} i J(K,bn,cm).
The proof of this theorem is rather intricate and we postpone it until the next

section. For the end of this section, we give some corollaries, either for torsion
quotients or for the groups B*(n,m), By«(n,m) and B(n, m).

Corollary 4.15 (Embedding of torsion quotients). Let ¢ be the embedding of
Theorem 4.14.
e The morphism ¢ induces an embeddz’ng B (p n,pm d-K,b,c) = J(K,bn,cm),
which exhibits B (pn,pm;d - K,b,c) as J( $ bnem )

e The morphism ¢ induces an embeddmg *(pn,pm;d - K,c) — J(K,n,cm),
which exhibits B*(pn,pm;d - K, c) as J(p 1 C,,T)

e The morphism ¢ induces an embedding B (pn,pm;d - K,b) — J(K,bn,m),
which exhibits B.(pn,pm;d - K,b) as J( K b”m)

plnm
e The morphism ¢ induces an embedding B(pn,pm;d-K) — J(K,n,m), which
exhibits B(pn,pm;d - K) as J(pl,{l .
In all these cases, the notions of reflections for the quotient torsion of J-braid groups
on the one hand and for the generalized J-groups on the other hand coincide.

Proof. The first point is simply a rephrasing of the definitions. The other points
follow from considering the square of natural quotients

J(K,bn,em) —— J(K,n,cm)

l |

J(K,bn,m) —— J(K,n,m)
U

Corollary 4.16 (Permuting torsion coefficients). Let o € Sy be a permutation,
and let o(K) be the d-tuple (ko(1),- - -, ks(q))- We have
Bi(n,m; K,b,c) and Bi(n,m;o(K),b,c) are reflection isomorphic.
B*(n,m; K,c) and B*(n,m;o(K),c) are reflection isomorphic.
B.(n,m; K,b) and Bi(n,m;o(K),b) are reflection isomorphic.
B(n,m; K) and B(n,m;o(K)) are reflection isomorphic.

Proof. This is a direct application of Proposition 3.7 (permutation of parameters),
since torsion quotients of J-braid groups are generalized J-groups by Corollary 4.15.
O

Corollary 4.17 (Swap of parameters in torsion quotients). The following
torsion quotients are reflection isomorphic:

e Bi(n,m; K,b,c) and BX(m,n; K, c,b)
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e B*(n,m; K,c) and Bs(m,n; K,c).
e B(n,m; K) and B(m,n; K).

Proof. The argument is precisely the same as that of Corollary 4.16, using the re-
flection isomorphism between J(K,bn',em’) and J(K, em’, bn’) given by Proposition
3.7. O

Since we can take K = (o00,...,00), and b = ¢ = oo if needed, Corollary 4.15
implies in turn the following result.

Corollary 4.18. Let o : Bi(pn,pm) — J((p+2) - o) be the embedding of Theorem
414,

(1) The morphism ¢ induces an embedding B*(pn,pm) — J(p - 0o, n, 00).

(2) The morphism ¢ induces an embedding B (pn,pm) — J((p + 1) - oo, m).

(8) The morphism ¢ induces an embedding B(pn,pm) — J(p - oo, n,m).

Moreover, for each of these morphisms, the image is a finite index normal subgroup.

4.4. Proof of the embedding theorem. In this section we fix two positive integers
n,m, and we let d := n A m denote the gcd of n and m. We write m = gn + r the
euclidean division of m by n. We also fix a d-tuple K := (ki, ..., kq) of elements in
N>y U {0}, along with two elements b, ¢ € Nxo U {o0}.

This section is devoted to the proof of Theorem 4.14. The core of the proof
is to compute a presentation of the normal closure of {s1,...,sp,sp.1,5,52} in
J(K,bn,cm) using the Reidemeister-Schreier method. The proof is separated in
several intermediate results, and the first reduction is made possible by the following
elementary group theoretic result.

Lemma 4.19. Let G be a group, and let H be a normal subgroup of G. Assume that
the natural map Z(G) — G/H is surjective. Then for every x € H, the conjugacy
classes of © in H and in G coincide.

Proof. Let x € H, and let Clgy(x) (resp. Clg(x)) denote the conjugacy class of x in
H (resp. in G). Since H is a subgroup of G, it is immediate that Cly(z) C Clg(z).
Conversely, let grg~! € Clg(x). By assumption, we can write g = zh with 2z € Z(G)
and h € H. We then have grg~! = hah~! € Cly(z), which terminates the proof. [J

Lemma 4.20. Let N be the normal closure of {s1,...,8pt+1,5)40} in J(K,bn,cm).
The normal closures of {s1,...,8p,8p11,Sp4a} in J(K,bn,em) and in N are equal.
Proof. The element o := s1---spp2 of J(K,bn,cm) is central. Its image in the

quotient J(K,bn,cm)/N ~ Z/mZ is 1, which is a generator. By Lemma 4.19, the
conjugacy classes of an element of N in N or in J(K,bn,cm) are equal.

Now, the normal closure of a finite subset is generated by the union of the conju-
gacy classes of its elements. Since the union of the conjugacy classes of {s1,...,sp,
Spi1s Spiat i J(K,bn,cm) or in N are equal, this finishes the proof. O

Using this lemma, we can first compute a presentation of the group N using the
Reidemeister-Schreier method, and then compute a presentation for the normal clo-
sure of {s1,...,8p,8p.1, 5,52} in N, again using the Reidemeister-Schreier method.

Proposition 4.21. The correspondance

{xibﬁsi forie[l,p+1],
Z = Spho.

induces an injective morphism from B*((p+1), (p+1)m; (K, bn),c) to J(K,bn,cm),
whose image is the normal closure of {s1,...,spt1,8)4 9} in J(K,bn,cm).
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Proof. To simplify the notations in this proof, we denote bn by k,,1. Let N denote
the normal closure of {s1,...,8p41,8p40} in J(K, kpt1,em). The quotient group
J(K,bn,cm) /N is isomorphic to Z/mZ and a Schreier transversal for N is given by
{51]0+2}j€[07m,1]]. By the Reidemeister-Schreier algorithm, the group N admits the
following group presentation:

(1) Generators: {Z;;}( j)e[1,p+2]x[0,m—1]}
(2) Relations:

xf‘] for all ¢ such that k; <occand 0 < j<m—1, (4.4a)
Tpt2,jTp+2,+1 " Tpt2,j+em—1 = 1 if € < oo, (4.4b)
Tpyo;=1forall 0 <j<m—2, (4.4c)

TigTig1,j * Tp2,jTL 41 - - - TimLj4l = Tid1,jTit2,5*  Tph2 141 Tija1 (%),
(4.4d)
(x)forall1<i<p+2, 0<j<m—1.
where the index ¢ is taken modulo p + 2, and the index j is taken modulo m — 1.
Moreover, for all i € [1,p +1] j € [0,m — 1], we have z;; = s),,5i5,7,, while
Tpt2,m—1 = Spyo. Now, for j € [0,m — 2], we have zp42; = 1 so that Equation
(4.4b) reads
Tpyom—1 = 1if ¢ < o0 (4.5)
and Equation (4.4d) reads

TigTiglj e Tprl TLG41 -+ TiLjtl = TitdjTig2y  Tptl i1 Tijr1. (4.6)

For any [ € [1,m(p + 1)], there is a unique way to write [ as j(p + 1) 4+ i with
j € [0,m —1] and i € [1,p + 1]. Using this, we relabel the generators by setting
Yip41)+i = Tij 1 € [0,m — 1] and i € [1,p + 1]. We also set z := zp12m—1. The
group N then admits the presentation

(1) Generators: {y1,. .., Um@p+1)s 2};
(2) Relations:

yFi=1ifl=j(p+1)+iand k; < oo, (4.7a)
2°=1if ¢ < oo, (4.7b)
YilYit1* Yitp = Yir1¥it2 * Yigpt1 forall 1 <i < (m—1)(p+1) + 1, (4.7¢)
Yim—1)(p+1)+i " Ymp+1)ZY1 " Yiol = Ym—1)(p+1)+i+1 " Ymp+1)2Y1 - Yi (%)
(4.7d)

(%) forall 1 <i<p+2
Rephrasing Equation (4.7¢) yields that, for i € [1,(m — 1)(p+ 1)], we have

Vil it
Yitp+1 = Y; ®.
Since y; commutes with itself, we deduce that
_ YiYi+1 - Yi+p Y1 Yp+l
Yitpt1 = Y; =y T

Let us define 0 := y; - - - yp+1. By an immediate induction on the above formula, we
obtain that _
Vi€ [0,m—11i € [Lp+11, Yy = v - (4.8)
Using this, we can delete the generators y; for [ > p+1 from the presentations, along
with Equation (4.7c).
Now, for 7 € [1,p + 1], we have

m—1
Ym—1) (1)t Ymper) = Wi ypr) ).
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In particular, Equation (4.7d) is equivalent to
8 My Y1 6™ 2y i1 = 0 i Y 8Ty i
By simplifying this equation by 6!~ we obtain that
Vi€ [L,p+ 1]y yps10™ 2yt Yict = Yig1 o Ypr16™ T2y oy (4.9)
By an immediate induction, we obtain that
Y1 - ~yp+15m_lz = 5m_12y1 CYpy1 & 20 =6z

By adding the relation z§ = dz to our presentation of N, we can ask (4.9) to be
verified only for i € [1,p], and not for i € [1,p + 1].
We finally obtained that the group N admits the following presentation
(1) Generators: {y1,...,Yp+1,2};

(2) Relations:

y¥i for all i such that k; < oo (4.10a)
2¢=11if ¢ < o0, (4.10b)
yl...yp+12:2y1...yp+1, (410C)
Y1 Ypr1 20" T Y i = Y1 Ypr126™ Layy -y for all 1< i < p,
(4.10d)
where y; = x;0 = s; and where z = xpi9m_1 = 8;12. As this presentation is
precisely the defining presentation of B*((p + 1), (p + 1)m; (K, bn),c), we have the
desired result. O

Remark 4.22. Since B*(p + 1, (p + 1)m, (K,bn),c) is generated by z1,..., 211
and z, the above proposition also proves that the subgroup (si---,spt1,5p49) in
J(K,bn,cm) is normal.

Remark 4.23. By Theorem 4.5, the normal closure of {sy,...,spi1, )4} in J((p+
2) - 00) is in turn isomorphic to J((p + 2) - 00).

Proof of Theorem 4.14. We aim to compute a presentation of the normal closure of

{81, 8p, 8541, 8phe} in J(K,bn,cm). By Lemma 4.20, it is sufficient to compute
a presentation of the normal closure of {si,... s Sps sger} in the subgroup N of
J (K, bn, cm) which is the normal closure of {s1,...,sp,8p+1, 5,42} By Proposition

4.21, we can identify N with B*(p+1, (p+1)m; (K,bn),c). The euclidean division of
(p+1)m by p+1is (p+1)m = (p+1) xm+0. The group B*(p+1, (p+1)m; (K, bn),c)
is then defined by the following presentation:

(1) Generators: {x1,...,Zpy1, 2};

(2) Relations:

e =1 k; < oo, (4.11a
2¢=11if ¢ < o0, (4.11b

L1 Tpy1Z = 2X1 - Tpyd, (4.11c
Li41 " acp+1z(5m_1:c1 Xy = XLg vt .%'p+12(5m_1371 e Li—1, V1 § 1 g p + 1, (4.11d

where k,41 denotes bn.

Under the identification N ~ B*(p + 1,(p + 1)m; (K,bn),c), the normal clo-
sure we have to compute is the normal closure of {z1,...,2p, 25,4, 2} in B*(p +
1, (p+ 1)m; (K,bn),c). Let us denote by H this normal closure. We have B*(p +
1, (p+1)m; (K,bn),c)/H ~ Z/nZ and a Schreier transversal for H is {$;+1}j6[[07n—1]]'
By the Reidemeister-Schreier algorithm, the group H is generated by the elements
{74 j Yieq p+1].jefo,n—1] along with the elements {2;}jefo,n—1], Where
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_ —J ;
® I =T, T;T,} fori <p+1,
Tpt1,; = Lfor j <n—1,

® Tpiln-1 = Tpig,
o zj = 21 ).
In order for the relations of the presentation obtained by the Reidemeister-Schreier
method to be readable, we introduce some intermediate elements.
e Weset y:=p1pn1.
e For j € [0,n — 1], we set §; = x1j---xp; and 07 = @1+ Tpt1;. Notice
that d; = 07 for j <n —1, and that ;,_; = d,—1y.
e We set A = dg---90,_1y. Notice that, taking indices modulo n and setting
Dj =05 -0}, 1, we have

Aq50"'5r_2 ifj:n—l,
Dj =041 0n_1yA90 - 0pyjn-1 ifje€[n—r,n—2],
5j+1 --~5n_1yAq’150---5T+j_1 ifj S [[0,?”&—7’— 1]],

where m = gn + r is the euclidean division of m by n.
e Forie [1,p+1] and j € [0,n — 1], we define P; ; as

Tin-1"" " Tpn-1Tpt1n-120Dn- 12101 Ti—1,-1 i j=n—1,
Tij o Tpt1, 25410501 r g jon - Tic1rtjon if j € [n—mrn-2],
Tij-e -:L'p+17ij+1DjZE17r+j C i1+ if j € [[0, n—r— 1]].

With these definitions, the relations for of H obtained via the Reidemeister-Schreier
method are

2 =1if ki <00, VI<i<p,0<j<n—1 (4.12a)
P =1ifb< o, (4.12b)
zi=1lifc<oo,VO<j<n—1 (4.12¢)
5j2’j+1 = Zj(gj, V1 <] <n—2 (4.12(1)
On—1Y20 = Zn-10n_1Y, (4.12¢)
P1;=P,;,V1<i<p,0<j<n—1 (4.12f)
Equation (4.12d) implies that, for j € [1,n — 2], we have z;41 = zjj = zgom(s’

Op_9

Replacing z,_1 with zgo in Equation (4.12¢) yields

Sn—1y20 = (0o Op—2) 12000 -+ n_1y & Azp = 2pA.

For any [ € [1,pn], there is a unique way to write [ as jp + ¢ with j € [0,n — 1]
and ¢ € [1,p]. Using this, we relabel the generators z; ; as ajp4,; for ¢ € [1,p] and
j€0,n—1].

Using this relabel, we see that §; = ajp+1 - ajptp. In particular A = ay - - appy.
Moreover, we can rewrite the product D; as follows.

yAlay---ap_1y, ifj=n-—1,
Dj = S agiiypt1 - apnyAdiar - apqjny ifje€n—rn—2]
aj1ypr1 - YA rar - agy gy, G € [0,n—r —1].
Notice that for j € [0,n — 2], we have.
24103 11)p+1** OpnY = Zj+1041 - Op—1Y
=641 On_1920

= Q(j4+1)p+1 """ GpnYZ0-
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Using these formulae, we can rewrite the product F; ; as

Ap(n—1)+i " apny20Alar -+~ ag_1ypyir i j=n—1,
Pij = @jpti- - apnyzodlar - agyjnprion i€ [n—r,n—2],
Wjpi - Apny20AT ar - agyjpric i j€[0,n—r—1].
We notice that the expressions of P;; for j = n —1 and for j € [n —r,n — 2] are
equal. We then have

p._Ja apny2oAlay - apriyj—pn—1 if j€n—rn—1],l=jp+1,
Z’] ap - apnyzoAilay - - apri—1 i je0,n—r—1],0 =jp+i.
Since i € [1,p], we have j € [0,n —r — 1] if and ounly if | = jp + i € [1,pn — pr].
Likewise, we have j € [n —r,n — 1] if and only if [ = jp+1i € [pn — pr + 1, pn].
Finally, we can rewrite the relations of (4.12) to obtain the following presentation
of H.

(1) Generators: {ai,...,apn, ¥, 20};
(2) Relations:

afi =1ifl=jp+iandk; < oo, (4.13a)
Yy =1if b < oo, (4.13b)
25 =11if ¢ < o0, (4.13c)
ai - ApplY -+ 20 = 2001 GpnY, (4.13d)
141 - Apny20Atar -+ Aprgi—pn = ap - Appy20ATay - - Gprypi—pn—1 (*) (4.13¢)

(%) for I € [pn — pr + 1,pn],
ajgq - apnyzoAqflal S Qppg = Ay 'apnyzoAqflal S Qppg—1 (6%) (4.13f)
(xx) for I € [1,pn — pr].

where we have ajp; = ;; = xéﬂxix;il, y = asgﬂ and zg = z. Identifying
B.(p+1,(p+ 1)m; (K, bn),c) with its image in J(I, bn, cm) using Proposition 4.21,
we identify aj,4; with sf,Jrlsis;il, y with sj; and z with s7% 5. As the above pre-
sentation is precisely the defining presentation of B} (pn,pm;d - K,b,c), we have the
desired result. O

5. GENERALIZED J-GROUPS AS TORSION QUOTIENTS OF J-BRAID GROUPS

In the last section, we saw with Corollary 4.15 (embedding of torsion quotients)
that torsion quotients of J-braid groups can be seen as (finite-type) generalized J-
groups. It turns out that the converse is also true, and that the family of finite type
generalized J-groups coincides with that of torsion quotients of J-braid groups.

For readability purposes, we extend the definition of reflection isomorphism by
saying that a torsion quotient of J-braid group W and a generalized J-group ) can
be reflection isomorphic if there is an isomorphism ¢ : W — @ such that ¢(R(W)) =
R(Q). What we are going to show is that every finite-type generalized J-group is
reflection isomorphic to some torsion quotient of J-braid group. The proof is split
in several intermediate results and relies ultimately on a case-by-case approach.

For the remainder of the section, we fix an integer p, along with elements k1, ..., kp,
a,b,cin N>o U {oo}.

We begin by giving a list of finite-type generalized J-groups up to reflection iso-
morphism.

Lemma 5.1. A generalized J-group has finite-type if and only if it is reflection
isomorphic to a generalized J-group of one of the following form:

k1 -+ kp nb mc .
. J(1 o m) with n,m > 1,
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o J(Mr e 22N with 1 > 2,
<SR IYEYY).
AR
IR

We will denote these families of groups by F(n,m), F(2,2,1), F(2,3,3), F(2,3,4),
F(2,3,5) respectively..

Proof. By definition, a generalized J-group J ( I[{(,) has finite-type if and only if
J(K)/J(Ilf,) is finite. This quotient is isomorphic to J(K’), where K’ denotes the
tuple consisting of coordinates of K’ different than 1. If K’ has length 2, then J(K')
is a finite abelian group since K’ contains only finite elements. If K’ has length 3 or
more, then we obtain the result by Lemma 3.9. O

Now that these cases have been listed, we can give a precise statement

Theorem 5.2 (Generalized J-groups as torsion quotients). We have the fol-
lowing reflection isomorphisms:

. J(kll - kp mb mc) Sget Bi(pn,pm,d - (k1,...,kp),b,c), where n,m > 1,

1 n m
J(kl1 kl” 22“ 22b llc) =pret B2(Ip+1+1),2(lp+1+1);(M,l-a,l-b,2-¢)), where
1 >2 and where M =2l - (k1,...,kp),

J(Rr ke 23y ope B(12p + 14,12p + 14; (M, 4 - b,4 - ¢,6 - a)), where

M =12 (ky,. . ky).

J(Rr o ke 2a Ay g e B(24p + 26, 24p + 265 (M, 12 - 0,8 - b,6 - ¢)), where

M =24 (k... ky).
J (R ke 20305y cop g B(60p + 62,60p + 62; (M, 30 - a,20 - b,12 - ¢)), where
M =60 (ki,...,kp).

In particular, any finite-type generalized J-group is reflection isomorphic to a torsion
quotient of J-braid group.

Remark 5.3. By construction, torsion quotients of J-braid groups are generated by
a finite number of reflections. Theorem 5.2 implies that any finite-type generalized
J-group is generated by a finite number of reflections.

For the remainder of the section, we do a case-by-case study of the families de-
scribed in Lemma 5.1 to prove Theorem 5.2. Family F(n,m) has already been dealt
with in Corollary 4.15. We separate the other cases in two subsections.

5.1. The families F(2,2,1), F'(2,3,3) and F(2,3,4). In fact, Corollary 4.15 can
also help us deal with families F'(2,2,1), F'(2,3,3) and F(2,3,4). We begin with an
elementary lemma:

Lemma 5.4. The correspondence

T 8 fori e [1,p],

Y= Spt1,
Z = Spt2,

induces a reflection isomorphism B (p,p; K,b,¢) Zget B(p + 2,0 + 2; (K, b,¢)) ZRet
J(K,b,c).
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Proof. The euclidean division of p by itself reads p = 1 x p + 0. The defining
presentation of BX(p, p; K, b, ¢) is then

Generators: {z1,...,2p, Y, 2};
Relations:

ki _ ko _ _ ke _ b o
W=t = =a =y =2 =1,

Ty TpYz = ZT1 - Tpy,
Tip1 TpYZTL - Tigy = i+ TpY2T1 - Tigr—1, VI <1<,

This is exactly the defining presentation of B(p+2,p+2; (K, b,¢)) and of J(K,b,c).
O

We now prove a technical lemma, which we then apply to the families F(2,2,1),
F(2,3,3) and F(2,3,4).

Lemma 5.5. Let k,d,n,m be positive integers. We have a reflection tsomorphism
ki -+ kp ak bdn cd d-(k1 -+ kp ak) bn cm
J( - 1pak d:Cd::) RefJ( d(1 .. T k) n m)
Proof. Consider the group Jy := J(d - (k1,...,kp,ak),bn,cm), and let us denote its
generators by o1,...,0qp41), T, - Recall that every integer [ € [1, (p + 1)d] can be
written uniquely as [ = j(p+ 1) +4 with 7 € [0,d — 1] and ¢ € [1,p+ 1]. Using this,
we relabel o7 as 05 ;.
By Lemma 5.4, the correspondence

Tij = Tj(py1)+i for j € [0,d—1],i € [1,p+ 1],
T =Y,
B 2,
induces a reflection isomorphism
J1 Zret W= Bi(d(p+1),d(p+1);d - (ki, ..., kp,ak),bn,cm).

Now, Theorem 4.14 (embedding of J-braid groups) gives an explicit reflection iso-
morphism between W and the generalized J-group Jo := J (k’l1 - klp alk bcfi" Cdm) Let
S1,. .., Sp+3 denote the generators of J(k1, ..., kp, ak,bdn, cdm). Composing the two

above reflection isomorphism we obtain that the correspondence

oij sg)ﬂsis;zz for j € [0,d —1],i € [1,p+ 1],

d
T 8040,

d
Iu = Sp+37
induces a reflection isomorphism ¢ between J; and Js.

d-(ky - kp ak) bn cm

Now, the generalized J-group Ji := J( (1 k) nom

) is defined as the normal
closure in J; of the set

X i={oy; | je[0.d—1],i € [Lp]} U{opyry |5 € [0,d =1 u{r",u™}.
The image of J{ under ¢ is the normal closure Jj of p(X) in Jo.

Let Jy denote the generalized parent J-group of Jo. The quotient 72 /J2 is isomor-
phic to Z/dZ x 7Z./dZ, and is generated by the respective images of sy and sp13.
Moreover, the image of the center of J2 in JQ/JQ is (1,1). The quotient @ of Jg/JQ
by this image is then a cyclic group of order d, generated by the image of sp42. It is
also generated by the image of sp43. Applying Proposition 3.18 (conjugacy classes
of reflections), we obtain that

e Forallie[1,p+1] and ¢ > 1 the set C; 4 := {Sp+2( Ns p+2 | jef0,d-1]}
is a complete set of representatives of the conjugacy classes in Jo of elements
conjugate to (s;)? in Js.
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e For g > 1, an element of Jo which is conjugate to (sp12)? (resp. to (sp43)?))
in Jy is also conjugate to (sp42)? (resp. to (sp+3)?) in Ja.

By definition of ¢, we have

p

d d
p(X) = (U Ci,l) U CP-HJC U {Spg-% 3p+3m}

i=1
After what is said above, the normal closure (ﬁ this set in Jy is the normal closure
of {51,...,sp,slgﬂ,sgi?,sg%} in Jo. Since Jy = J(ki,...,kp,ak,bdn,cdm), the
reflection isomorphism J; ZRer Jo restricts to a reflection isomorphism

d-(k1 - kp ak) bn emy\ ~ k1 - kp ak bdn cdm
J(d~(1 w1 k) n m)—RefJ(1 -1 k dn dm)

as we wanted to show. O

Lemma 5.6 (Family F(2,2,0)). Let M := 2l - (ki,...,kp). We have a reflection
1somorphism

Moreover, the latter group is reflection isomorphic to J(M,l-a,l-b,2-c) and we have
the second statement in Theorem 5.2.

Proof. By Proposition 3.7 (permutation of parameters), we have a reflection isomor-
phism
k1 kp 2a 2blcy ~ k1 - kp lc 2a 2b
J(Rr e 2 Bley s g g (Kr e byl 2o 2y

D

11
We can apply Lemma 5.5 with d = 2,n =m =1 and k
3.7, we obtain reflection isomorphisms

2
. Again by Proposition

ki - kplc2a2b\ ~ 2:(k1 - kplc)aby ~ 2:(k1 - kp)abeced
J(l w112 2)*Ref°7(2.(1 ) 11>*Ref‘](2~(1 1) 111 l)'

Using Theorem 4.14, this last group is in turn reflection isomorphic to
Bi(2l(p+1),2l(p+1);l- N,c,c).

where N = (2 (ki1,...,kp),a,b). Again by Proposition 3.7, this group is reflection

isomorphic to

since (M,l-a,l-b) is equal to [ - N up to permutation. The second statement is a

direct application of Lemma 5.4. O

Lemma 5.7 (Family F(2,3,3)). Let M =12 - (ki,...,k,). We have a reflection
1somorphism

J(’“ll - ’flp 2; i;b i’;) pet Bi(12(p+1),12(p+ 1); (M,4-b,4-¢,4 - a),a,a).

Moreover, the latter group is reflection isomorphic to J(M,6 - a,4-b,4 - c) we have
the third statement in Theorem 5.2.

Proof. We can apply Lemma 5.5 with d = 3,n = m = 1 and kK = 2. Again by
Proposition 3.7, we obtain reflection isomorphisms

ki~ kp 2a 3b3c\ ~v 3-(k1 - kp 2a) bcy ~ 3-(k1 -+ kp) b c2a2a2a
J(l 12 3 3)—Ref‘](3.(1 - 102) 11)—Ref*](3.(1 1) 112 2 2)'

Using Lemma 5.6, this last group is in turn reflection isomorphic to
B;(4(3p+3),4(3p + 3); (N, 2.a,2.a), a,a)
where N =4-(3-(k1,...,kp),b,c). Again by Proposition 3.7, this group is reflection
isomorphic to
Bi(12(p+1),12(p+ 1); (M,4-b,4-¢c,4-a),a,a)

since (M,4-b,4-¢,4-a) is equal to (N,2-a,2-a) up to permutation. The second
statement is a direct application of Lemma 5.4. O
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Lemma 5.8 (Family F'(2,3,4)). Let M := 24 (ki,...,ky,). We have a reflection
1somorphism

J(kll kf’ 22‘1 %b %f) pet Bi(24(p+1),24(p+1); (M,12-a,8 - b,4-¢), ¢, c).

Moreover, the latter group is reflection isomorphic to J(M,12-a,8-b,6 - c) we have
the fourth statement in Theorem 5.2.

Proof. Up to permutation, we have

I = IR )

We can apply Lemma 5.5 with d =2,n =1,m = 2 and k = 3. Again by Proposition
3.7, we obtain reflection isomorphisms
k1 - kp 3b2a 4c\ ~ 2-(k1 - kp 3b) a 2¢\ ~ 2-(k1 -+ kp) a 2¢ 3b 3b
J( LT3 2a 46) ~Ref ‘]( 2-(11 ot 3) 12 ) ~Ref ‘]( 2.(11 1p) 123 3 )
Using Lemma 5.8, this last group is in turn reflection isomorphic to
Bi(12(2p+2),12(2p + 2); (N,8-b,4 - ¢), ¢, c)

where N =12-(2- (k1,...,kp),a). Again by Proposition 3.7, this group is reflection
isomorphic to

BI(24(p+ 1)724(p+ 1)a (Mv 12 - (L,S : b74 ’ C),C, C)

since (M,12-a,8-b,4 - ¢) is equal to (N,8-b,4 - ¢) up to permutation. The second
statement is a direct application of Lemma 5.4. Il

5.2. The family F'(2,3,5). At this stage, it remains to study the family F'(2,3,5),

that is groups of the form
J(kl < kp 2a 3b 50)
11235/

We cannot take advantage of Lemma 5.5 since 2,3,5 are pairwise coprime. We use
a more direct approach, which is both more intricate and computational.
We first deal with the case where every k; is infinite. Let p > 0 be an integer.

Notation 5.9. Let d > 1 be an integer. Exceptionally in this section, we sometimes
write G(d) for the group J(d - 00).

We consider the group G(p + 3), and we label its generators by z1,...,zp, s, t,u.
We denote by H, the normal closure of {z1,..., ), s%,t3,4°} in G(p + 3). We plan
to prove the following proposition

Proposition 5.10. The group H, is reflection isomorphic to J((60p + 62) - o).
By definition, a presentation for the quotient G(p + 3)/H,, is given by
(s,t,u | stu=tus = ust, s> =3 = u’ = 1).
By [3, Table 2|, this presentation is a presentation of the complex reflection group
G19, with s, ¢, u as generating reflections. The center of Gyg is a cyclic group of order
60 generated by stu. We identify the quotient G(p + 3)/H, with G19 from now on.
The case of p = 0 can easily be dealt with by interpreting Hp as a fundamental
group.
Lemma 5.11. The group Hy is reflection isomorphic to J(62 - 00).

Proof. The quotient G(3)/Hj is isomorphic to G1g9, which admits 62 reflecting hy-
perplanes (=lines) when acting on C2. Let us denote by X the complement in C? of
these reflecting hyperplanes.

By [3, Table 2|, the defining presentation of G(3) is also a presentation of the braid
group B(Ghg), that is the fundamental group of X/W. Moreover, the generators
of this presentations are generators-of-the-monodromy, i.e. braided reflections in
B(Ghy).
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The fundamental group of X is denoted by P(G1g). It is the kernel of the projec-
tion map B(G19) — G19 and we have an isomorphism of short exact sequences

1 Hy G(3) Gig 1
1 —— P(Glg) —_— B(Glg) G19 1

We claim that the isomorphism Hy ~ P(G1g) is the desired isomorphism.

Now, X is the complement of 62 lines in C2. By [20], the fundamental group of X
is isomorphic to J(62-00), where the generators are generators-of-the-monodromy in
the sense of [3]. Moreover, by [3, Proposition A3], the generators of the monodromy
in P(Gqg) are (up to conjugacy) equal to s, or u5 in B(G19) ~ G(3). This gives
the result. g

In order to complete the proof of Proposition 5.10 for p > 1, we first need a few
intermediate lemmas.

5.2.1. Group theoretic lemmas.

Lemma 5.12. Let p > 1 be an integer, and let G be a group isomorphic to G(p).
Assume that X = {z1,...,zp} is a subset of G such that

o The set X generates G,
o The product xy - - - x, generates Z(G).

Then a group presentation of G is given by
G=(T1,...,0p | T1-Tp =T TpT1 = ... = TpT1 - Tp—1)-
Proof. Let z denote the product 1 ---x,. Since z is central in G, we have
xl...xp:"[2...xpl‘l :..':(L‘pxl...xpil

Let ai,...,ap be generators of the group G(p). The correspondence a; — x; for
i € [1,p] induces a well-defined morphism ¢ : G(p) — G, which is surjective since X
generates GG. In order to conclude, it remains to show that ¢ is injective.

Since G is (abstractly) isomorphic to G(p), the quotient G := G/Z(G) is a free
group on p — 1 generators. Since the product aj---a, generates Z(G(p)), and
since the product z; - - -z generates Z(G), ¢ induces a surjective morphism ¢ from
G(p)/Z(G(p)) to G. Now, since free groups of finite rank are Hopfian, and since
G(p)/Z(G(p)) and G are both free groups on p — 1 generators, we obtain that @ is
an isomorphism.

We then have Ker(y) C Z(G(p)), which is a cyclic group generated by aq - - - ap.
Since (a1 - - - ap) = z is nontrivial, and since G is torsion free, we finally deduce that
© is injective. O

The main purpose of Lemma 5.12 is to replace an abstract group isomorphism
G ~ G(p) with an explicit isomorphism.

Lemma 5.13. Let G be a group and let H < G be a subgroup. Let X C G be a
subset which positively generates G, and let Y C H be an arbitrary generating set.
The group H s normal in G if and only if

Vee X,yeY,ayz ' € H

Proof. The only if part is immediate since xyz ! is a conjugate of an element of H.

Conversely, let h € H, and let x € X. We can write h as a product of elements of Y.
The element zhz~! is then a product of conjugates of elements of Y by X. Since all
these elements belong to H by assumption, we have zha~! € H. Now, any element
g € G can be written as a product z1 - - - &, with x; € X for ¢ € [1,n]. An immediate
induction then yields that ghg~' belongs to H. U
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Lemma 5.14. The group H), is abstractly isomorphic to J((60p + 62) - 00).

Proof. Let F denote the quotient G(p + 3)/Z(G(p + 3)), and let Z1,...,Tp, 5,1, T
denote the respective images of x1,...,xp,s,t,u in . The group F is a free group
generated by Z1,...,7p, 5, 1.

Let H, denote the image of H, in F. By Corollary 3.20 (center of generalized
J-groups), we have Z(H,) = Z(G(p+ 3)) N Hy, and thus H, ~ H,/Z(H,). We have
a morphism of short exact sequences

1 H, G(p+3) G 1
1 Fp F G19/Z(G19) — 1

The group G19/Z(G1g) is isomorphic to the alternating group As. In particular,
H, is a subgroup of index 60 in a free group on p+ 2 generators. By [18, Proposition
3.9], H,, is a free group on 60(p + 1) + 1 = 60p + 61 generators.

We have a short exact sequence

1— Z(H,) = H, — H, — 1

Which splits since Fp is free. We obtain that H, decomposes as a direct product
of Z with a free group on 60p + 61 generators, which finishes the proof since such a
direct product is isomorphic to J((60p + 62) - c0). O

By combining Lemma 5.14 and Lemma 5.12, proving Proposition 5.10 amounts
to finding a system of 60p + 62 generating reflections of H, whose product (in a
well-chosen ordering) generates the center of H,. Note that, since the center of G
is a cyclic group of order 60, the center of H), is generated by (x - - - :L'pstu)GO.

In order to complete the proof, we distinguish the cases p =1 and p > 1.

5.2.2. The case p = 1. This part of the proof is achieved through direct computations
using GAP4. Let us denote by z, s, ¢, u the generators of G(4).

o grg~! for g in

utu, ut, utsu, utsutu, utsutuu,
uttu, U, uutu, uut, uutst,
uutstsu, uutsu, uutsutuxru, uutsutu, UU,,

1, st, stsu, stsutu, stsutuu,
stsutxstxst, stsut, su, sutuzu, sutu,

sut, sutst, sutstsu, sutstsuu, sutsu,
sutsutuxu, sutsutu,  sutsut, sutsutsttu, suu,
suutstu, suutstuu, suutstrstrst, suutst, suuttu,
tu, t, tst, tsu, tsutuzxu,
tsutu, tsut, tsutst, tsutstsu, tsutstsuu,
tsutsttuxxstrst, tsutsttu, tsutsu, tsutsutu, tsutsutiu,
tsutturuu, tsuttu, tturuu, titu, titu

Let us label these words by m1,
We write x; for mzm; ~.

e gs’g~! for g in

1

...,mgo with m1 = utu, ms = ut and so on.

U, utsts, utsu, utsutsu, utsut, uts,
U, uutst, wuwutsus, wuutsuts, uuts, UUUS,
uuut, stsut, st, sus, sutsts, sutsus,
sutsut, suts, suus, suutst, suuts, 1,

tst, tsu, tsutsts, tsutsu, tsuts,

Let us label these by s; ... s30.



34

o gt3g~! for g in

utst, ut, uutsts, uutsus, uutsu,
uut, sts, stsu, sus, sutsus,
sutsuts, sutsut, su, suutst, suu,
tsus, tsuts, tsutsut, tsut, 1

Let us label these by t1,...,t20
o gu’g~! for g in
us, utsut, utsu, uutsts, 1, stsut,
stsu, sutsts, suutst, suuts, t, tsutsts

Let us label these by u1,...,u12

The group G(4) has a solution to the word problem (either considering that it is a
direct product of a free group with an infinite cyclic group, or using Garside theory).
We can then check directly that the product

up $1 X1 T2 S2 11 T3 S3 T4 T U S4 S5 U3 S Te L2 Ty ST T8

ZTg T10 13 X11 Ug S8 T12 t4 S9 X13 14 S10 U5 S11 t6 T15 S12 S13 Us T16

T17 t7 18 T19 T20 U T2l T2 S14 T8 U7 S15 T23 g S16 T24 Ta5 T26 T27 T28

29 Ug S17 T30 10 S18 T31 32 L33 X34 t11 S19 t12 S20 113 T35 S21 T36 37 Ug

T38 T39 S22 t14 U10 S23 T40 15 S24 T41 U1l T42 T43 S25 T44 L16 S26 Ta5 T4 T47

T48 T49 T50 U12 S27 Ts1 Ts2 17 Ts3 S28 Ts4 Tss Lig S29 Tse Ts7 L19 S30 Ts8 Ts9

T60 tgo (52)

is equal to (zstu)® in G(4). Since we have a system of 60 + 62 reflections in H
whose product generates Z(Hj), it only remains to show that this system generates
Hli

Lemma 5.15. The group Hi is generated by

{.731,... 71'60} @] {81 . ..830} U {tl,.. . ,tg()} U {Ul,...,ulg}
Proof. Let us denote by X our candidate generating set, and let H be the subgroup
of G(4) generated by X. Since X consists of conjugates of z,s%,¢3,u® in G(4), we
have H C H;. Moreover, we have shown that (wstu)® lies in H. Since Z(H;) is
generated by (zstu)®, we have H = H if and only if the image of H in Hy/Z(H;)
is equal to Hy/Z(H).

Now, since Z(Hy) = Z(G(4)) N Hy, the group Hi/Z(H;) is identified with the
image of H; in the quotient G(4)/Z(G(4)). Let F be a free group on three letters
X,0,T. The correspondence

T =X,
s+ 0o,

t— T,

u s (xor)L,

induces a group morphism G(4) — F, and an isomorphism G(4)/Z(G(4)) ~ F.
Under this isomorphism, the image of H;j is identified with the normal closure of
X, 02,73, (xor) ™%, while the image of H is identified with the subgroup generated by
the image of X.

Since the image of Hy in F has finite index, H; is a finitely generated free group.
And we can obtain a generating set by the Reidemeister-Schreier method. Moreover,
the equality problem is decidable for finitely generated subgroups of free groups [18,
Proposition 2.21]. We use the implementation in GAP4 of both the Reidemeister-
Schreier method and of the equality problem for finitely generated subgroups of free
group to conclude that the images of H and H; in F are equal, which is sufficient to
conclude that H and H; are equal. Il
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5.2.3. The case p > 1. Our strategy here will be to embed a copy of H; and G(4)
in H, and G(p + 3) in order to use the results of the above section. Consider the
elements z := x1---xp, s,t,u and let K be the subgroup of G(p + 3) generated by
T,8,t,U.

Lemma 5.16. We have the group presentation K = (x,s,t,u | zstu = stux =
tuxs = uxst). In particular K ~ G(4).

Proof. First, note that z := wstu generates the center of G(p + 3). In particular
we have Z(G(p + 3)) C G(4). Now, G(p + 3) decomposes as a direct product F' x
Z(G(p+ 3)), where F is the subgroup generated by zi,...,zp,s,t (which is free).
Under this decomposition, K becomes the direct product (x,s,t) x (z). The group
(x,s,t) is free on z, s,t, and thus a presentation of K is given by

K = (x,s,t,z | xz = zx,82 = z8,tz = zt).
Knowing that u = (zst) ™'z, we obtain the desired presentation. g

Using this lemma, we identify the group K with G(4) from now on. The restriction
of the projection map G(p + 3) — Gig to K is surjective since Gpg is generated by
the images of s,¢,u. The kernel of this restriction is equal to H, N K. We can then
also identify H, N K with Hj.

Let us consider the sixty words mi,...,mgo introduced in Section 5.2.2, along
with the set

S = {81,. . .,830} U {tl,.. . ,tg(]} U {ul,...,ulg}.
By Lemma 5.15, we know that Hj is generated by S, along with the mixmi_l for
i € [1,60]. By replacing each occurrence of x; in the product (5.2) with the product
miaf;lmi—l . "mixpmi_l, we obtain a decomposition of (x7 - '-xpstu)m as a product
of 60p + 62 reflections of Hp. In order to complete the proof of Proposition 5.10 in
this case, it remains to show that H), is generated by S, along with the elements
xij; = myzgm; for i € [1,p],j € [1,60].

Proposition 5.17. The group H, is generated by
{xij | ie[1,p],5 €[1,60]}US

Proof. Let us denote by X our candidate generating set, and let H be the subgroup
of G(p + 3) generated by X. Since X consists of conjugates of the xz;’s, along with
conjugates of s, ¢3 u5 in G(p + 3), we have H C H,,. It is then sufficient to show
that H is normal in G(p + 3).

Let z := x1---xpstu. The group G(p + 3) is positively generated by the set
A= {z,z7Y2y,...,7p,8,t,u} (this is a standard Garside theoretic fact, see for
instance [10, Proposition 1.2.4|). By Lemma 5.13, it is sufficient to show that any
conjugate of an element of X by an element of A lies in H. This is of course
true when conjugating by z or z~!. Moreover, since myg is the trivial word, we
have x1,...,2, € H. In particular, conjugating by z1,...,z, also leaves H globally
invariant. It remains to show that any conjugate of an element of X by an element
of {s,t,u} lies in H.

Now, let r € {s,t,u} and g € S. The element rgr~! lies in H,NG(4) = H;. Since
the generating set of Hy given in Lemma 5.15 is included in I, we have H; C H and
thus rgr—' € H. It remains to consider the conjugates of the generators x;; by an
element of {s,t,u}.

Note that the word myq, ..., mgo form a complete system of representative of the
quotient G19/Z(G19). Let j € [1,60], and let r € {s,¢,u}. The image in G19/Z(G19)
of rm; is represented by some word my. By Proposition 3.18 (conjugacy classes of
reflections), the elements rmja:mj_lrfl and mkxmlzl are then conjugate in Hy, say
by an element h. In particular, the elements rm; and hmj are equal modulo the
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centralizer of x in G(4). By Proposition 3.16 (centralizer of a reflection), we then
have rm; = hmya™(zstu)™ in G(4) for some n,m € Z. This implies that

b= (rmy)ai(rmg) ™
= (hmga™)z;(hmya™) ™
= (

hmkx"mlzl)xi’k(hmkmnmgl)71

rTi T

= (W1 app))win (@i 2pe)")
Lastly, since h € Hy C H, the element (h(z1 - zpx)") lies in H, and thus ra; jr~1
also lies in H, which finishes the proof. O

5.2.4. The general case. We can now prove that a generalized J-group in the family
F(2,3,5) is a torsion quotient of J-braid group:

Proposition 5.18 (Family F(2,3,5)). Let M = 60 - (k1,...,kp). We have a
reflection isomorphism

J(Fro e 203000y g J(M,30-a,20-b,12 - ).
Moreover, we have the last statement in Theorem 5.2.

Proof. Let J := J((p+3) - 00), and let J be the normal closure in .J of {zy,...,z,,
s2 13, ub}.

We consider the generating set of J given in Proposition 5.17 (which is also a
generating set when p € {0,1}). Let Q := G19/Z(G19). Notice that @ is the
quotient of .J(2,3,5) by the image of the center of .J.

Consider the words my, ..., mgo introduced in Section 5.2.2. They form a complete
set of representatives of ). Let ¢ € [1,p]. Since the image of x; is trivial in Q,

Proposition 3.18 implies that an element of J is conjugate to xfl in J if and only if it
k;
i
to the normal closure of {l‘fzj,j € [1,60]} in J.

Similarly, the word introduced in Section 5.2.2 defining s1, . .., s30 (resp. ti,...,t20,
ui,...,u2) form a complete set of representatives of the cosets in @ relative to the
image of s (resp. of ¢, of u). Again by Proposition 3.18, the normal closure of s2%
(resp. of 3%, u¢) in J is the normal closure of {s¢,...,s%} (resp. of {#4,... 3},
{ug, ..., u5y}) in J.

Since J ( kll - kf’ 2; %b 550) is obtained from J by quotienting by the normal closure

in J of {xlfl, . ,xf’i, 52 ¢3b, u5¢}, the isomorphism of Proposition 5.10 induces the
desired reflection isomorphism. The last statement in Theorem 5.2 is obtained by
applying Lemma 5.4. U

is conjugate in J to some m;(x )m]_1 The normal closure of xfz in J is then equal

6. CLASSIFICATION UP TO REFLECTION ISOMORPHISM

In this section, we establish the classification of torsion quotients of J-braid groups
up to reflection isomorphism. As a corollary, we will deduce the classification of
finite-type generalized J-groups up to reflection isomorphism.

6.1. Preliminary results. A useful tool to establish the classification is the concept
of reflecting hyperplane. Since torsion quotients of J-braid groups are not “actual”
reflection groups (in the sense that we did not define a reflection representation of
these groups), we cannot define reflecting hyperplanes in the usual geometric way.
However, the usual definition of reflecting hyperplanes for a linear reflection groups
coincides with the following more combinatorial analogue, which is introduced in [12]
for toric reflection groups.
In this section, we fix W a torsion quotient of a J-braid group.



37

Definition 6.1 (Reflecting hyperplane). Let ~ be the relation on R(W) gener-
ated by the relations ¢ ~ 7° for all 1 < a,b < o(r), 7 € R(W) and write [r] for
the equivalence class of r € R(W). The set H(W) of reflecting hyperplanes of W is
defined to by {[r]},ermw)-

The action of W on R(W) by conjugacy induces an action of W on H(W). The
W-orbit of [r] will be denoted by W.[r].

There is a natural map O : H(W) — NxoU{oco}, which sends [r] to max{o(s) | s €
[r]}. Since the action of W on R(W) preserves the order of the reflections, the map
O is W-invariant.

Notation 6.2. A (finite) multiset of cardinality n is defined as the orbit under the
symmetric group S, of a n-tuple. If (z1,...,x,) is a n-tuple, then the associated
multiset will be denoted by {x1,...,x,}.

Definition 6.3 (Torsions). Let [ri],..., [rx] be a set of representatives of the W-
orbits of H(W). The multiset of torsions T (W) is defined by

T(W) :=={0([r:)) | i € [1, K]}
Notice that T'(WW) does not depend on the choice of the r;’s.
These concepts are useful as they are invariants under reflection isomorphism:

Proposition 6.4. Let Wy, Wy be two torsion quotients of J-braid groups, and let
w: Wi — Ws be a reflection tsomorphism.

(a) The morphism ¢ induces a bijection H(W1) — H(Ws) sending [r] to [¢(r)].

(b) The above bijection induces a bijection H(W1)/W1 — H(W2)/Wsy sending
Wh.[r] to Wa.[p(r)].

(¢) The two multisets T(W1) and T(W3) are equal.

Proof. (a) By definition, ¢ restricts to a bijection R(W;) — R(Ws). For r € R(W7)
and a,b € [1,0(r) — 1], we have [¢(r)?] = [p(r)?] in H(W3) by definition of H(WW>).
Thus the map [r] — [p(r)] is a well-defined map H (W) — H(W3). Considering the
inverse morphism ¢! (which is also a reflection isomorphism), we obtain that the
map [r] — [p(r)] is actually a bijection.

(b) Let i denote the bijection H(W1) — H(Ws) given by point (a). Let r € R(W7)
and w € W. We have

P(w.[r]) = P([wrw™]) = [pwrw™)] = p(w).lp(r)] = (w).7([r]),

and thus @ induces a well defined map H(Wh)/W1 — H(Wa)/Ws sending Wi.[r]
to Wa.[p(r)]. Again, considering the inverse morphism ! gives that this map is
actually a bijection.

(¢) Let us denote by Op, Oy the respectives maps O for the groups Wi and Wha.
For r € R(W7), we have

Oa(2([r])) = O2([p(r)]) = max{o(s) | s € [¢(r)]}-

Now, ¢ induces an order preserving bijection [r] — [¢(r)]. Thus the above maximum
is also the maximum of the set {o(s) | s € [r]}, that is O1([r]). If [r1],...,[rx] is a
set of representatives of the Wy orbits of H(W7), then [p(r1)],...,[¢(rk)] is a set of
representatives of the Wy orbits of H(W5) by point (b). We then have

T(W1) ={O01([rs]) | i € [1, kI} = {O02(lp(r)]) | i € [1, K[} = T(Wa).
O

The (multiset) cardinality of T'(W) is the cardinality of H(W)/W, which is also
invariant under reflection isomorphism.
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Remark 6.5. Notice that the proof of Proposition 6.4 is purely formal and doesn’t
use the particular theory of torsion quotients of J-braid groups. In particular, the
definition and results of this section also applies to other contexts where a concept of
reflection can be defined (or really, any distinguished generating set invariant under
conjugacy). In particular, we can also define the reflecting hyperplanes and the
torsion set of a generalized J-group.

6.2. Reduced J-groups. In the previous section, we have shown that every finite-
type generalized J-group is reflection isomorphic to a torsion of a J-braid group.
Corollary 4.15 (embedding of torsion quotients) gives a converse to this result, but
it is actually more specific. Indeed, a torsion quotient of J-braid group is reflection
isomorphic to a particular type of finite-type generalized J-group, which we call
reduced J-group. The main interest of this particular family is that we can complete
its classification up to reflection isomorphism.

In this section, we fix a positive integer p, along with a p-tuple K = (ki,...,kp)
in (N2 U{oo})P. We also fix another tuple K" = (k{,..., k) in (N>1)P such that
divides k; for each 1.

Definition 6.6 (Reduced J-group). A generalized J-group J(II((,) is said to be
reduced if K' contains at most two entries distinct from 1, and if all the elements of
K’ are pairwise coprime.

Lemma 6.7. A generalized J-group has finite-type if and only if it is isomorphic to
a reduced J-group.

Proof. Let J ( [Ig,) be a reduced J-group. By definition, J(K') is a finite cyclic group,
and thus J ( I[((/) has finite-type. Conversely, let J ( [[((,) be a finite type generalized
J-group. Then J ( II((,) belongs (up to reflection isomorphism) to one of the families of
Lemma 5.1. By Lemmas 5.6, 5.7, 5.8 and Proposition 5.18, four of the five families of
Lemma 5.1 are actually reflection isomorphic to generalized parent J-groups, which
are in particular finite-type generalized J-group. The only case remaining is the case

J([I((l) — J(kl < kyp nbmc)_

11 n m

Le us write d :=n Am, m’ := 3, n’ := 5. By Corollary 4.15 (embedding or torsion

quotients), we have

J(Fro ke mbmey op o B (pdm!, pdn’ d - (ku, ..., ky), b, c)

11 n m
~ d-(k1 -+ kp) bn’ em/
—Ref J( d(1 - 1) n m')

and the latter is a reduced J-group. O

Remark 6.8. If p = 3, then a reduced J-group J([I((,) can be written as J(f br em)
with n and m coprime. In this case, the definition of reduced J-groups coincide with

that of J-reflection group appearing in [14].

Lemma 6.9. Let r € J([I((,) be a reflection. The reflecting hyperplane [r| consists of
non-trivial powers of a reflection in J(I[({,),

Proof. Assume that there exists ri,ry € J(II({/) and n,m € N3y such that r{ = rj".
We write r; = gsi-lg_1 and ro = hsé?h_l. Up to conjugacy, we can assume that
g=1. We get sﬁln = hsé?mhfl. In particular, Lemma 3.17 tells us that ¢ = j and
that l1n = lom.

Since h centralizes sé?m, it centralizes s; by Proposition 3.16 (centralizer of a

reflection). We then have that ro = séQ is a power of s;, as well as r| = siz Using

Lemma 3.4, r; and r9 are powers of sfi, which concludes the proof O
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Recall that for a generalized J-group J(;g,), the quotient @ of J(K’) by the image
of Z(J(K)) is useful for studying the conjugacy of reflections. In the case where J([I((,)
is reduced, the group J(K’) is cyclic and @ is trivial. In particular by Proposition
3.18 (conjugacy classes of reflections), we obtain

Lemma 6.10. Let J(Ilg,) be a reduced J-group.

(a) Two reflections r,r' € R(J([I((,)) are conjugate in J(I[({,) if and only if they
are conjugate in J(K).

(b) We have |H(J(§,))\ =p and T(J({g,)) is the submultiset of {K/K"} consist-
ing of elements different from 1, and where K/K' = (k1/ky, ..., kp/k},).

Proof. Point (a) is a direct application of Proposition 3.18 since the quotient @ is
trivial in this case. After point (a), a complete system of representatives of J ( [I((,)—

. . .. 4 k!
orbits on H(J(II({,)) is the set of nontrivial elements among, {slfl, ..., 8p"}. Moreover,

by Lemma 6.9, any r in this set generates [r]. Knowing that the torsion of sf" is
ki/k., we have the result. O

The fact that the quotient group @ evoked above is trivial has another application,
which is that we can compute the inner automorphism group of a reduced J-group.

Lemma 6.11. Assume that p > 3 and that J(IIE,) 1s reduced. Then the inner au-

tomorphism group J([[g,) 15 1somorphic to the aolternating polygonal Cozeter group
Wit
K

Proof. Since p > 3, we can consider the natural morphism 7 : J(K) — WE, whose
kernel is the center of J(K). By Corollary 3.20 (center of generalized J-groups), the
kernel of the restriction of 7w to J(}[({,) is the center of J({({,). Thus the image W; (K')
of J ( [Ig,) under the morphism 7 is isomorphic to the inner automorphism group of
J ( [[((,) Since J ( [I((,), there are at most two entries n, m in K’ which are different from
1. Thus a presentation for the quotient Wi /Wi (K') is (z,y | 2" = y™ = 1,2y = 1).
Since n and m are coprime, this group is trivial so that we have W (K') = Wt and
the result is shown. O

On top of representing every finite-type generalized J-group up to reflection iso-
morphism, the reflection isomorphism problem is rather easily solvable for reduced
J-groups. Our solution to this problem relies on an induction argument using the
following lemma

Lemma 6.12 (Conjugacy class deletion). Let i € [1,p]. Let K; be the tuple
obtained from K by replacing the i-th entry with k;/k,. Let alsot ty,...,t, denote the
generators of J(KZ) The correspondence given by s; — t; for j € [1,p] induces a
surjective morphism 7 : J(K) — J(K;), whose kernel is normally generated by sfg.
Moreover, if J(Ilg,) is reduced, then m restricts to a surjective morphism J(II({,) —

J(?}), whose kernel is the normal closure of sfl m J(Ilf,)

Proof. Note that if k; = kI, then K; = K and there is nothing to show. We then
assume that k; > kj. The first statement comes from the observation that adding the

relation sfi = 1 to the defining presentation of J(K) yields the defining presentation

of J(K;) (note that if k; = 1, this amounts to deleting s; entirely). Now, assume
that J([Ig,) is reduced. By Lemma 6.10, the conjugacy class of sfi in J(}I((,) and in

J(K) coincide. Thus the normal closures of sf’z in J( I[((/) and in J(K) coincide.
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!

K

The kernel of the restriction of © to J ( II((,) is then the normal closure of sjj n
k'

J(é{,). Moreover, since J(Ilg,) is the normal closure in J(K) of {s;” | j € [1,p]}, and

since 7 is surjective, the image of J([I((,) in J(K;) is equal to J(?,) O

Notice that in the above lemma, the resulting group J (g’,) is again a reduced
J-group (up to deleting a possible (i) column).

Proposition 6.13 (Classification of reduced J-groups).
Let W1 = J([I((,) and Wy = J(LL,) be two reduced J-groups.
(a) The group Wy is abelian if and only if p < 2, in which case W1 =ger J ( kl{kll )
or W1 Z=Res J(kl{k/l ’”{ké) depending on the length of K.
(b) If Wy and Wy are nonabelian, then we have Wi Zge Wo if and only if p = q
and if there is o € Sy, such that o(K) =L and o(K') = L.

Proof. (a) The first statement is already known by Corollary 3.20 since the gener-
alized parent J-group is known to be abelian if and only if p < 2. If p = 2, then
() = (50 5 Zner J(F1{H F2(R) 1 p = 1, then J(56) = T (1) Zner J(M1{4).

(b) Let Wy := J({é) and Wy := J(LL,) be two reduced J-groups, and let ¢ :
Wi — Wy be a reflection isomorphism. By Lemma 6.11, we have Wzr o~ WI}*‘ By
Proposition 2.11, we have K = L up to permutation, and in particular the lengths
of K and L coincide. Let us denote it by p. Since we assume W; and Wy to be
nonabelian, we can assume that p > 3. We now proceed by induction on p.

The case p = 3 is already handled in [14, Theorem 1.6]. Indeed, reduced J-groups
in this case coincide with the J-reflection groups introduced in loc. cit (see Remark
6.8).

Assume now that p > 4. Up to permuting K and K’, we can assume that k] = 1.
Considering the bijection H(W;)/W1 — H(Ws)/Ws induced by ¢ after Proposition

6.4, we can consider the unique ¢ € [1, p] such that Wa.[p(s1)] = Wg.[tfi}. By Lemma
6.12, we have

T(52) et 7(55).
Since k| = 1, the actual defining matrix () of J([[g}) is obtained from (Ié}) by
removing one column (i) We then have |k| = p — 1. As we explained above, the

same must hold for the defining matrix ( )’\\,) of J ( %3’ ) Which is possible if and only if

¢, =1 (and |A| = p—1). The induction hypothesis gives that there is some o € Sp_1
such that o(k) = X and o(x’) = o()\’). Since the order of ¢(s1) is equal to the order
of s1, we have ki /k} = ¢;/¢;. The equality k| = ¢, = 1 then gives that the columns
(kll) and (Zf) are equal, which finishes the proof. O

6.3. Classification of torsion quotients of J-braid groups. We are now able
to complete the classification of torsion quotients of J-braid group up to reflection
isomorphism, by taking advantage of Corollary 4.15 (embedding of torsion quotients)
and of the classification of reduced J-reflection groups.

In this section, we fix four positive integers n,m,p,q. We let d := n A m (resp.
d' := pAq) denote the gcd of n and m (resp. of p and ¢). We also fix two tuples K :=
(k1,...,kq), L := (€1,...,Lg) of elements in Nso U {oo}. Lastly, we fix b,¢, 8,7 €
N>o U 00.

We will use the results of Section 6.1, in particular, the following lemma will be
useful:

Lemma 6.14. Let W be a torsion quotient of J-braid group.
o If W =B:(n,m;K,b,c), then |H(W)/W|=d+2 and T(W) ={K,b,c}.
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o IfW =DB*(n,m;K,c), then [ HW)/W|=d+1 and T(W) ={K, c}.
o If W = Bi(n,m; K,b), then |H(W)/W|=d+ 1 and T(W) ={K, b}.
o If W =DB(nm;K), then [ HW)/W|=d and T(W) ={K}.

Proof. We only prove the first point, the other points are obtained similarly. Af-
ter Lemma 4.7 (conjugacy classes of braid reflections), a complete system of rep-
resentatives of W orbits on H(W) is {[z1],...,[xd], [y],[2]}. Moreover, any r €
{z1,...,24,y, 2} generates [r]. Knowing that the torsion of x1,...,24,y,z is given
by ki, ...,kq,b,c, we have the result. O

We already have seen several instances of reflection isomorphisms between torsion
quotients of J-braid groups in Corollary 4.16 (permuting torsion coefficients) and
Corollary 4.17 (swap of parameters in torsion quotients). Let us list a few more such
isomorphisms.

Lemma 6.15. We have the following reflection isomorphisms
(a) B*(n,m; K, c) =ger B(n + %,m + 1; (K, ¢)) if m divides n.
(b) Bi(n,m; K,b,c) =Ret Be(n + -,m + 15 (K, ¢),b) if m divides n.
(c) Bi(n,m; K, b) SRet B(n +1, m+ 2. (K,b)) if n divides m.
(d) BI(n,m,K,b ¢) ZRet B (n + 1, m + o (K,b),c) if n divides m.
(¢) B(2,2; (k1, k) =get B*(1,m; (K1), k2) et Bx(n,1; (1), k2).
(f) B(1,n; (k1)) =ret B(1,m; (/ﬁ))

Proof. (a) is a consequence of (b). Assume that m divides n, in other words that we

have m’ =1, d = m and n’ = . By Corollary 4.15 and Corollary 4.16, we have

Bi(n,m; K., b, c) ERef J( K lm/’ cm’)

d1ln' m

e T )

=nue I 1)

Ref Bi(n + %,m+ 1;(K,c),b)

as claimed. (c) and (d) are respective consequences of (a) and (b) using Corollary
4.17.
(e) Again by Corollary 4.15 and Corollary 4.16, we have

B*(lamv (kl)akQ) =—Ref J(kl k?nn/l i)

SRef J (k1 kfnm )

S eof J(kl kz)
= B(2,2; (ki1, k2)).

The second isomorphism is obtained using Corollary 4.17.
(f) Both of the defining presentations are (x | ¥ = 1 if k < 00). O

Since reflection isomorphisms are in particular group isomorphisms, two reflec-
tion isomorphic torsion quotients of J-braid groups are either both abelian or both
nonabelian. The following lemma completely classifies abelian torsion quotients of
J-braid groups.

Lemma 6.16 (Determination of abelian torsion quotients).
(a) The group Bi(n,m; K,b,c) is not abelian.
(b) The group B*(n,m; K,c) is abelian if and only if n = 1.
(c) The group B.(n,m; K,b) is abelian if and only if m = 1.
(d) The group B(n,m; K) is abelian if and only if 1 € [n,m], or if n = m = 2.

Proof. (a) Let W := Bi(n,m; K,b,c). By Corollary 4.15, we have
W 2gep J(J o em’y,

d1ln" m
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Since b, ¢ > 2, the defining matrix of W as a reduced J-group has d+2 > 2 nontrivial
columns. The group W is then nonabelian by Corollary 3.20 (center of generalized
J-group).

(b) Let W := B*(n,m; K,c). If n = 1, then we saw in the proof of Theorem 4.5
(isomorphism type of J-braid group) that B*(1,m) is free abelian generated by x;
and z.

Assume now that n’ # 1. By Corollary 4.15, we have

W Ret J( K n' cm’)_

d1n’ m

If n’ # 1, then the defining matrix of W as a reduced J-group has d+2 > 2 nontrivial
columns. If n’ =1, then d = n > 2 by assumption, and the defining matrix of W as
a reduced J-group then has d + 1 > 2 nontrivial columns. In both cases, the group
W is nonabelian by Corollary 3.20.

(¢) The group B«(n,m; K, b) is reflection isomorphic to B*(m;n; K, ¢) by Corollary
4.17. The results then comes from point (b).

(d) Let W := B(n,m; K). By Corollary 4.17, we can assume that n > m. If
1 € {n,m} or if n = m = 2, then B(n,m) is abelian by Theorem 4.5.

Assume now that we are not in one of these cases, i.e. n > 2 and m > 3. By
Corollary 4.15, we have

W Sgee J( K 7M.

If n/ # 1, then m’ # 1 and the defining matrix of W as a reduced J-group has
d + 2 > 2 nontrivial columns. If n’ = 1, then d = n > 2 by assumption, and the
defining matrix of W as a reduced J-group then has d + 1 > 2 nontrivial columns.
In both cases, the group W is nonabelian by Corollary 3.20. U

Theorem 6.17. The reflection isomorphism relation on the set of torsion quotients
of J-braid groups is generated by the isomorphisms appearing in Corollary 4.16,
Corollary 4.17 and Lemma 6.15. In other words, it is generated by the following
1somorphisms:

e Permutation of the tuple K .,
Bi(n,m; K, b, c) Zget Bi(n,m; K, ¢, b),
B*(n,m; K, ¢) ZRet Bi(m,n; K, c),
B(n,m; K) =get B(m,n; K),
B?*)(n,m; K(,b),¢) ZRet By (n+ 5,m+ 15 (K, ¢)(, b)) if m divides n,
B(2,2; (k1, k2)) Zret B*(1,m; (k1), k2) Zget Bi(n, 1; (k1), k2),
B(1,n; (k1)) Zgret B(1,m; (k1)).

In order to prove Theorem 6.17, we have to consider two reflection isomorphic
torsion quotient of J-braid groups Wi and W, and to show that they are related by
a sequence of reflection isomorphism appearing in either Corollary 4.16, Corollary
4.17 or Lemma 6.15.

Notice that by Corollary 4.17, we do not need to consider the case where W; =

B.(n,m; K,b) (resp. where Wy = B.(p, q; K, 3)).
Case 0 : Wy and Wy are abelian By Lemma 6.15 and Lemma 6.16, It is sufficient
to consider the cases of groups of the form B(2,2; (k1,k2)) or B(1,1,(k1)). These
two groups are not reflection isomorphic as they do not have the same number of
conjugacy classes of reflecting hyperplanes.

For the remainder of the proof, we assume that neither Wi; nor Wj is abelian.

Case 1 : Wy = B(n,m; K), Wy = B(p, q; L).
First, we have d = [H(W1)/Wi| = [H(W2)/Ws| = d’ by Proposition 6.4 and Lemma
6.14. Moreover, these two results also give that T(W;) = {K} = {L} = T(W>).
Applying Corollary 4.16, we can assume that L = K. Applying Corollary 4.17, we
can assume that n <m and p < q.
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Now, by Corollary 4.15, we have

ngRefJ(dI,(lZ:m:)andWQ RefJ(dlgg)

In order to properly write Wi, Ws as reduced J-groups, we may need to remove
columns for instance if ' = 1 or if m’ = 1. However, after these reductions, applying
Proposition 6.13 yields that the number of elements in (n’,m’) which are equal to 1
is equal to the number of elements in (p', ¢') which are equal to 1. Moreover, since
n’ <m' and p’ < ¢, we deduce that in each case we have n’ = p’ and m’ = ¢/. Since
d = d', we deduce that n = p and m = ¢. In other words W, = Wh.
Case 2. Wy = B*(n,m; K, c), Wa = B(p,q; L).
First, we have d + 1 = |H(Wh)/Wi| = |[H(W2)/Ws| = d' by Proposition 6.4 and
Lemma 6.14. Moreover, these two results also give that T'(W;) = {K,c} = {L} =
T(Ws).

Now, by Corollary 4.15, we have

Y

W1 ZRet J(j?lgi L,,T/) and Wy =ger J(dlp g ).
If m" =1 (i.e. if m divides n), then W1 Zger B(n+ %, m +1; (K, ¢)) by Lemma 6.15
and we are in Case 1.

If m’ > 1, then since ¢ > 2, the column (qu? ) then has two distinct coefficient, and
the bottom coefﬁ(:lents is dlfferent from 1. Since no column in the defining matrix of
W, satisfies this condition (even if p’ = 1 or ¢’ = 1), then Proposition 6.13 implies
that W7 and Ws cannot be reflection isomorphic.
Case 3 : Wy = Bl (n,m; K,b,¢c), Wy = B(p,q; L).
If n' = 1, then Wy Z=get B*(n+ 1,m + 2;(K,b),c) by Lemma 6.15 and we are in
Case 2. Similarly, if m’ = 1, then Wy Zgef Bi(n + 2=, m + 1; (K, ¢),b) by Lemma
6.15. By Corollary 4.17 we are then also in Case 2.

Now, by Corollary 4.15, we have

lq/

Wi ger J( K 07 em) and Wy RefJ(dllp 0

n

Since b, ¢ > 2, the defining matrix of Wj contains two columns whose coeflicients are
distinct while the bottom coefficient is different from 1. Since the defining matrix of
W7 contains no such column (even in p’ =1 or ¢’ = 1), Proposition 6.13 implies that
W1 and Wy cannot be reflection isomorphic.
Case 4 : Wi = B*(n,m; K, c), Wy = B*(p,q; L, 7).
First, we have d + 1 = |H(W1)/W1| = |[H(W3)/Ws| = d' + 1 by Proposition 6.4 and
Lemma 6.14. Moreover, these two results also give that T(W;) = {K,c} = {L,~} =
T(W3).

Now, by Corollary 4.15, we have

Wh RefJ(K”C;n”)andWQ RefJ(dlZ’Z]q)'

If m' =1, then W1 2Ret B(n + 1=,m +1; (K, c)) by Lemma 6.15 and we are in Case
2. Slmﬂarly, if ¢ =1, then W2 SRef B(p + q,q +1;(L,v)) by Lemma 6.15 and we
are also in Case 2. We can then assume that m’, ¢’ > 1.

Since ¢ > 2 (resp. v = 2), the column (Cmm;l) (resp. (ﬂqu )) is the only column in the
defining matrix of Wj (resp. of Wa) whose coefficients are distinct while the bottom
coefficient is different from 1. By Proposition 6.13, we then have m’ = ¢’ and ¢ = .
Moreover, since d = d’', we have m = q.

If n = 1, then the defining matrix of W; contains d + 1 columns. By Proposition
6.13, we must then have p’ = 1. If n’ > 1, then (;’j) is the only column in the
defining matrix of W; whose coefficients are equal. Since the only possible column

in the defining matrix of Wy whose coefficients are equal is (g :), Proposition 6.13
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implies that n’ = p’ > 1. In each case, we have p’ = n/ and p = n since d = d’. In
other words W7 = Whs.
Case 5 : Wy = B(n,m; K,b,¢), Wo = B*(p,q; L,7).
If n' = 1, then Wy Zger B*(n+1,m+7; (K, b), c) by Lemma 6.15 and we are in Case
4. If m' = 1, then Wy =ger Bo(n+ 2, m+1; (K, ¢),b) by Lemma 6.15. By Corollary
4.17 we are then also in Case 4. If ¢’ = 1, then Wy et B(p+ q,q +1;(L,v)) by
Lemma 6.15 and we are in Case 3. We can then assume that n/,m’/, ¢ > 1.

Now, by Corollary 4.15, we have

Wi RefJ(K%%”)andW2 Ref'](d'lpqu)'

Since b, ¢ > 2, the defining matrix of Wj contains two columns whose coefficients are
distinct whlle the bottom coefficient is different from 1. Since v > 2, the defining
matrix of Wi contains one such column (even in p’ = 1), Proposition 6.13 implies
that W; and W5 cannot be reflection isomorphic.
Case 6 : Wy = Bi(n,m; K,b,c), Wo = B:(p,q; L, 3,7)-
First, we have d + 2 = |H(Wy)/Wi| = [H(W2)/Wa| = d' + 2 by Proposition 6.4
and Lemma 6.14. Moreover, these two results also give that T (W) = {K,b,c} =
{L, 3,7} = T(W3). Applying Corollary 4.17, we can assume that n < m and p < q.

Now, by Corollary 4.15, we have

Wi Zget J( K % ) and Wa gt J( )] Bp]f )

If n' = 1, then Wy Zget B*(n 4+ 1,m + ™;(K,b),c) by Lemma 6.15 and we are in
Case 5. If m’ = 1, then n’ < m/ is also equal to 1 and we are also in Case 4. If p’ = 1
or if ¢ = 1, then exchanging the roles of Wy and W5 also brings us back to Case 4.
We can then assume that n',m/,p’, ¢ > 1.

Since b,c > 2 (resp. [,7 = 2), the columns (%/),(‘:ﬁ,) (resp. (Bplf,),(é‘%/)) are
the only columns in the defining matrix of Wy (resp. of Ws) whose coefficients are
distincts while the bottom coefficient is different from 1. By Proposition 6.13, and
since n’ < m/, p’ < ¢, we then have n’ = p', m’ = ¢’. Since d = d’, we deduce that
n = p and m = q. Moreover, we also have bn’ = 8p’ and ecm’ = ~¢/, which implies
b= and ¢ = . In other words W, = Whs.

Since Cases 0 to 6 cover all possibilities, this finishes the proof of Theorem 6.17.

We finish this section with a consequence of Theorem 6.17 on the classification of
J-braid groups.

Considering the isomorphisms given in Corollary 4.16, Corollary 4.17 and Lemma
6.15 when all the torsions are infinite, we obtain the following result:

Corollary 6.18. The reflection isomorphism relation on the set of J-braid groups is
generated by the following relations

(1) Bi(n,m) Zgrer Bi(m,n); B*(n,m) Zgret Bi(n,m); B(n,m) Zget B(m,n),

(2) B*(n,m) Zgret B(n + 2=, m + 1) if m divides n,
(3) B*(n, m) Zget Be(n + 7=, m + 1) if m divides n,
(4) Bi(n,m) Zger B(n+1,m + ) if n divides m,
(5) Bi(n,m) Zgret B*(n+1,m + 2) if n divides m,

(6) B(2 ) ZRef B* ( ) ZRef B*(n> 1);
1,n) Sger B(1, m)

Since each reflection isomorphism given in Corollary 4.16, Corollary 4.17 and
Lemma 6.15 lifts at the level of J-braid group, we also have the following corol-
lary:

Corollary 6.19. Let B, B’ be two J-braid groups, and let W, W' be respective torsion
quotients of B and B'. If W and W' are reflection isomorphic, then so are B and B'.

Remark 6.20. Specializing Corollary 6.19 to p = 3 solves [16, Conjecture 3.2.3].
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7. SEIFERT LINKS

7.1. Reminders on Seifert links. So far our point of view on J-braid groups and
their torsion quotients has been purely combinatorial and given in terms of generators
and relations. A topological interpretation of J-braid groups is given in [13] as link
groups of particular links called torus necklaces, which generalize the classical torus
knots. Torus necklaces make up the majority of a family of links called Seifert links.
We give some reminders on Seifert links here, following the exposition of [13].

In this section, we fix two positive integers n, m.

We start by defining torus necklaces following (for a precise definition as the closure
of particular braids, see |13, Definition 4.2]).

e The torus link L(n,m) is the closure of the braid (oi---0,-1)"™, where
01,...,0n—1 denote the Artin generators of the braid group on n strands.
(see Figure 1).
e The link L.(n,m) is the disjoint union of L(n,m) with a circle going around
the internal heart of the torus (see Figure 1).
e The link L*(n,m) is the disjoint union of L(n, m) with a circle going around
the external heart of the torus (see Figure 1).
e Thelink L¥(n,m) is the disjoint union of L(n, m) with two circles, one around
the internal heart of the torus, and one around its external heart (see Figure
1).
On top of torus necklaces, we are interested in keychain links: The keychain K (k)
is the disjoint union of k circles around the internal heart of the torus (see Figure 2).

(D LB4) (LG4 (o) L(3,4) (0) L(3,4)

Fiaure 1. The torus necklaces L}(3,4), L.(3,4), L*(3,4) and L(3,4)

FIGURE 2. The keychain K(5)

The study of these links is justified by the following result which classifies all links
whose associated group admits a nontrivial center:

Theorem 7.1. [6] and [5, Theorem 1]

(1) The knot group of a knot K has a nontrivial center if and only if K is isotopic
to a torus knol.

(2) The link group of a link L has a nontrivial center if and only if L is isotopic
to a torus necklace or to a keychain.
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The links which appear in the second statement of the above theorem are called
Seifert links since they are precisely the links whose complement in S? are Seifert
fibered spaces. Not only are Seifert links interesting because the center of their link
groups is nontrivial, they are also central objects in the study of the so-called JSJ
decomposition of link complements (see [4] for a discussion of the JSJ decomposition
in the context of link). The relationship between Seifert links and J-braid groups
appeared in [13] by the second author:

Theorem 7.2. [13, Theorem 4.7]

(1) The link group of LE(n,m) is isomorphic to BE(n,m).

(2) The link group of L.(n,m) is isomorphic to B.(n,m).

(3) The link group of L*(n,m) is isomorphic to B*(n,m).

(4) The link group of L(n,m) is isomorphic to B(n,m).
Moreover, under these isomorphisms, meridians of the link group correspond to braid
reflections of the J-braid group.

The statement in |13, Theorem 4.7| assumes that n, m are coprime, but as pointed
out in |13, Section 5.1], the isomorphisms of |13, Theorem 4.7| does not require any
coprimality assumption. Moreover, examining the proof shows that the assumptions
that m > 2 is not required for the second statement to be true. Likewise for the
third and fourth statements.

On top of the torus necklaces groups, let us also mention that the group of the
keychain link K (k) is a direct product Fj x Z of a free group on k letters with the
group of integers. Under this isomorphism, the generators of Fj x Z correspond to
meridians in the link group.

A classification of Seifert links up to isotopy is given by the following result:

Proposition 7.3 (Isotopy classes of Seifert links). [/, Proposition 3.5/
The equivalence relation ~ of unoriented isotopy on Seifert links is generated by the
relations:

(a) Li(n,m) ~ Li(m,n)); Li(n,m) ~ L*(m,n); L(n,m) ~ L(m,n),
(b) Li(n,m) ~ L(n+ L&, m+1) if m|n,

(c) Li(n,m) ~ L*(n+ 2, m+1) if m|n,

(d) L(2,2) ~ Ly(n,1) ~ L*(1,m),

(e) L(1,n) ~ L(1,m),

() L(2,2) ~ K (D),

(9) L(L1) ~ K(0).

Combining this result with Corollary 6.18, we can show that the "topological
isomorphism type" of a link group completely characterizes the isotopy type of a
Seifert link:

Theorem 7.4. Let L,L' be two Seifert links, and let L, L' be their respective link
groups. The following are equivalent
(i) The links L, L' are isotopic,
(ii) There is an isomorphism L — L' which maps meridians in L bijectively to
meridians in L'

Proof. (i) = (4i) is true in general for all links, so that we only have to prove the
converse statement.

First, we assume that L and L’ are torus necklaces. In this case £ (resp. L')
is isomorphic to a J-braid group B (resp. B’) in a way that maps meridians to
generating (braid) reflections. Thus statement (i) implies that B and B’ are reflection
isomorphic. We can then apply Corollary 6.18, which implies that B and B’ are
related by a sequence of isomorphism appearing in Corollary 6.18. For each of these
isomorphisms, the associated links L and L’ are isotopic (compare the isomorpisms
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of Corollary 6.18 with the isotopies of Proposition 7.3). We then have that L and L’
are isotopic.

Now, assume that L’ is a keychain link say K (k) with & > 0. Since the link group
of K(k)is L' = Fj, x Z (where the generators are meridians), a generator of the Z
part is a meridian.

Assume that L is a torus necklace. Let B be a J-braid group isomorphic to £
in a way that maps meridians to generating reflections. The isomorphism given
by (ii) then sends a generator of Z(L') to a generating reflection r of B. Since B is
reflection isomorphic to a generalized J-reflection group, Proposition 3.16 (centralizer
of a reflection) implies that B = Cp(r) is abelian. The group £ = Fj, x Z is then
also abelian, and k < 1. In this case, the link L’ is isotopic to a torus necklace by
Proposition 7.3 and we are back in the first case.

Lastly, assume that L = K (k') is another keychain. We have £ ~ £’ if and only
if k =K', in which case L and L’ are isotopic. O

7.2. Torsion quotients of Seifert links. Since for every J-braid group B there
is a Seifert link group £ and an isomorphism B — L sending braid reflections to
meridians, it is very natural to consider torsion quotients of Seifert link groups as
well.

Definition 7.5 (Torsion quotient of a link). Let L be a link and let Li,..., L,
be its knot components. A torsion quotient of L is a group of the form

k
m (SN\L)/ (i, ... my")), (7.1)
where for each i € [1,p], m; is a meridian of L; and k; € N>oU{oco}. The conjugates of
non-trivial powers of the images of m1, ..., m, in this group are still called meridians.

Two such torsion quotients are said to be topologically isomorphic if there exists an
isomorphism which induces a bijection between the meridians.

By Corollary 4.15 (embedding of torsion quotients) and Theorem 5.2 (general-
ized J-groups as torsion quotients), the family of torsion quotients of J-braid groups
coincides with the family of finite-type generalized J-group up to reflection isomor-
phism. By Theorem 7.2, we obtain that the following families of groups coincide up
to isomorphism preserving the generators:

e Finite-type generalized J-groups
e Torsion quotients of J-braid groups
e Torsion quotients of torus necklaces

Since we know that the finite groups in the first family are precisely the complex
reflection groups of rank 2, we obtain the following result:

Corollary 7.6 (Finite torsion quotients of Seifert links). The family of fi-
nite torsion quotients of Seifert links precisely coincides with the family of rank two
complex reflection groups.

Proof. By the above discussion, the finite torsion quotients of torus necklaces are
the finite generalized J-groups, which are the rank two complex reflection groups by
Corollary 3.15.

It remains to determine the finite torsion quotients of keychain links, which is im-
mediate: if k& < 2, every finite quotient torsion of K (k) is a direct product of two
cyclic group (which is a rank two complex reflection group) and if & > 3, every
quotient torsion of K (k) contains a free product of two nontrivial groups, hence it is
infinite. O

It turns out that torsion quotients are extremely rigid, at least for Seifert links, in
that they detect isotopy of links:
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Theorem 7.7 (Classification of torsion quotients of Seifert links).
Let L, L’ be two Seifert links, and let W, W' be respective torsion quotients of L and
L' If W and W' are topologically isomorphic, then L and L' are isotopic.

Proof. Assume that W and W' are topologically isomorphic torsion quotients of L
and L'

If L and L’ are both torus necklaces, then the result is a combination of Corollary
6.19 with Theorem 7.4.

Now, assume that L is a torus necklace and that L' = K (k) is a keychain. There is
a meridian in L' which is central. The image in W of this meridian is then a central
reflection. Proposition 3.16 then implies that W = Cy(r) is abelian. Since L' is a
direct product of Z with a free product of k£ nontrivial cyclic groups, we obtain that
k < 1. In each cases, L' is isotopic to a torus necklace by Proposition 7.3 and we are
back in the first case.

Lastly, assume that both L = K (k) and L' = K (k) are keychains. We write

W =Z/aZx - *Z]apZ x Z]pZ and W' := Z/01Z % -+ % L|bpZ x L] qZ.

We know that W (resp. W’) is abelian if and only if k < 1 (resp. k¥ < 1). Since
W and W' are in particular isomorphic, we have k < 1 if and only if &' < 1. If
k =0, then W = Z/pZ admits 1 reflecting hyperplane in the sense of Definition 6.1
(replacing reflections with meridians). If k = 1, then W ~ Z/a1Z x Z/pZ admits
two reflecting hyperplanes. We then have k = k' if k =0 orif k=1, and L, L’ are
isotopic.

Assume now that k, k" > 1. The center of W (resp. of W') is the direct factor
Z/pZ (vesp. Z/qZ). The groups W/Z(W) and W'/Z(W') are the two free products
of k and k' nontrivial cyclic groups. Since the minimal number of generators of a
free product of n nontrivial cyclic groups is n by Grushko’s Theorem, we obtain that
k = k' and that L and L’ are isotopic. O
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