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LAMFA, Université de Picardie Jules Verne, CNRS UMR 7352,
33, rue Saint-Leu, 80000, Amiens, France.

Abstract. The homology of a Garside monoid, thus of a Garside group, can be computed
efficiently through the use of the order complex defined by Dehornoy and Lafont. We
construct a categorical generalization of this complex and we give some computational
techniques which are useful for reducing computing time.

We then use this construction to complete results of Salvetti, Callegaro and Marin
regarding the homology of exceptional complex braid groups. We most notably study the
case of the Borchardt braid group B(G31) through its associated Garside category.
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Introduction

The question of finding suitable ways to compute the homology of specific classes of
groups (in particular by finding computationally efficient resolutions of the trivial module)
is a broad field of study. The particular case of the classical braid group (as defined by Artin
in [Art25]) was first studied by Arnold in [Arn70] using methods of algebraid topology (more
precisely Alexander duality). His work was then adapted to the more general case of braid

E-mail address: o.garnier@u-picardie.fr.
Date: November 26, 2023.
2020 Mathematics Subject Classification. Primary 20J06 and 18G35 ; Secondary 20F36 and 20F55.
Key words and phrases. Garside Category, Gaussian Category, Homology, Complex braid groups.

1
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groups associated to Coxeter groups (i.e spherical Artin groups). This is summarized in the
survey [Ver98].

On the other hand, the combinatorial behavior of the classical braid group was first
studied by F. Garside in [Gar69], in which the author gives a solution to both the word
problem and the conjugacy problem. These methods were later generalized to other spherical
Artin groups [BS72], [Del72], [Bes99], [Adj66], [EM94], and then to the class of Garside
groups [DP99], [Pic01], [FG03], [God07], [BGG07], into what is now called Garside theory.
This theory was notably proved in [DL03] and [CMW04] to provide convenient resolutions
for homology computations.

Moreover, before the coining of the term Garside group by Dehornoy and Paris, the com-
binatorial properties of Artin groups had already been used in [Sal94] and [Squ94] to provide
resolutions and homology computations. The approach of the latter was then generalized
in [DL03, Section 4] to a class of Gaussian monoids, which encompasses Garside monoids.

Afterwards, near the end of the 2000’s, Garside theory began to be further developed
into the theory of Garside categories [Kra08], [Bes07]. This culminated in the publication
in 2015 of the reference book [Deh+15], which summarizes the state of the art and the
adaptations of Garside theory to a categorical context. Among these adaptations, the first
resolution defined in [DL03] is adapted to categories. However, the second resolution -
the order complex - although briefly mentioned, is not explicitly adapted to the case of
a category. Furthermore, the constructions of free modules over a category and of the
homology of categories are not detailed in depths.

In this paper we directly address these two problems. We first show, following the ar-
guments in [Squ94], that the homology of a category coincides with that of its enveloping
groupoid under suitable assumptions. As we actually plan to compute group homology, we
also state that the homology of a group is the same as the homology of a groupoid to which
it is equivalent. We obtain the following theorem. For the concept of a left-Ore category,
see Definition 1.15.

Theorem. (Corollary 1.19 and Proposition 1.20)
Let C be a left-Ore category, and let G be the groupoid of fractions of C. For every C-
module M we have H∗(C,M) = H∗(G,ZG ⊗C M). Furthermore, if G is a group, then every
equivalence of categories G → G induces a G-module structure M ′ on M , and we have
H∗(C,M) = H∗(G,M

′).

We then construct a categorical analogue of the order complex of Dehornoy and Lafont. To
do this we introduce a notion of (locally) Gaussian category, which generalizes the notion of
Garside category, as considered in [Bes07]. The definitions are direct adaptations of [DL03,
Section 4] to the categorical context. The main difference is that we now keep track of the
sources and targets of morphisms and of the cells. Such a point of view is implicitly present
in the original article of Dehornoy and Lafont, where some diagrams already represent
elements of a monoid by arrows, suggesting a categorical viewpoint on these constructions.
We get the same result as in [DL03]: the complex we obtain is a free resolution of the trivial
module over a locally left-Gaussian category (Proposition 2.15). As the definition of the
order complex is dependent on some additional choice, we also give a practical method for
handling this choice, in order to reduce the number of cells.

Since Garside categories are a particular case of Gaussian categories, this theoretically
applies to a vast family of examples. For instance, finite index subgroups of Garside groups
and centralizer of periodic elements in Garside groups are naturally associated to some
Garside category (which is not a Garside monoid a priori). However, the size of these
structure, along with the recursive nature of the differential of the order complex, makes
it really hard to perform actual computations. This is where the method we propose for
reducing the number of cells may be used most effectively.

As a concrete application of our construction, we compute the homology of complex braid
groups with coefficients in various modules. Recall from [BMR98, Section 2] that a complex
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braid group B(W ) is defined as the fundamental group of the space of regular orbits of
some complex reflection group W ⩽ GLn(C). We can restrict our attention to irreducible
groups without loss of generality. The classification of irreducible complex reflection groups
was done in 1954 by Shephard and Todd (see [ST54]): there is an infinite series G(de, e, n)
with three integer parameters, and 34 exceptional cases, labeled G4, . . . , G37. We restrict
our attention to the braid groups of these exceptional groups.

Over time, almost all exceptional braid groups have been shown to admit a Garside group
structure (see for instance [Bes15, Section 8], [Pic00, Examples 11, 12, 13], [DP99, Example
1]). The only exception (among exceptional braid groups) is the Borchardt braid group
B(G31), which is equivalent to the groupoid of fractions of a Garside category, instead of
being the group of fractions of some Garside monoid.

The Garside monoid structures of the other exceptional braid groups have already been
used in [CM14] and [Mar17] to compute homological results. The lack of a categorical
version of the order complex of Derhornoy and Lafont proved to be a problem in computing
the homology of the Borchardt braid group, as the only resolution available at that time
afforded far too many cells for most explicit computations: only the integral homology of the
Borchardt braid group could be computed in [CM14], using other tools like Betti numbers
and reduction modulo p. Our adaptation of the order complex to categories allows us to
complete results from [CM14] and [Mar17] regarding this group. Furthermore, we also apply
our methods of reducing the number of cells to other exceptional groups in order to give
comparisons with the results in [Mar17], where the author used the order complex defined
for Garside monoids.

The paper is organized as follows. In Section 1, we review the notion of module over
a category, and, in particular, the construction of a free module over a category. We also
prove that the homology of a category satisfying the (left-)Ore condition coincides with the
homology of its enveloping groupoid, and that the homology of a groupoid is the same as
the homology of a group to which it is equivalent. In Section 2, we introduce the notion of
a Gaussian category, and our generalization of the order complex to these categories, which
provides an explicit free and finite resolution of the trivial module. We also give a practical
procedure for reducing computations in practice. In Section 3, we apply this construction
to various Garside monoids and categories associated to exceptional complex braid groups.
In particular we compute the homology of the Borchardt braid groups with coefficients in
the set of Laurent polynomials over the rationals. We also apply our method to reduce
computations to give comparison with earlier results of [CM14] and [Mar17]. Lastly, as we
encounter the same computational problems as in [Mar17] regarding the computation of the
homology of B(G34) with coefficient in the set of Laurent polynomials over the rationals,
we compute some results in finite fields in order to obtain a conjecture on this particular
homology.

Acknowledgments. The computational results for the braid groups of G24, G27, G29, G31,
G33 and G34 were obtained using the MatriCS platform of the Université de Picardie Jules
Verne in Amiens, France. I thank Étienne Piskorski, Laurent Renault and Jean-Baptiste
Hoock for their help in using it. I also thank my PhD thesis advisor Ivan Marin for his
precious help.

1. Homology of a Category

In order to define an analogue of the Dehornoy-Lafont order complex for categories, one
first needs to define the homology of a category in general. In particular we need notions
of resolutions, free modules over a category and tensor product of modules over a category.
Then we need, just as for monoids, to give a relation between the homology of a category
and the homology of its enveloping groupoid under suitable assumptions.
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In accordance with the convention of [Deh+15] regarding composition of arrows, the
composition of the diagram

x
f // y

g // z

will be denoted fg. In the same vein, the categories that we will consider are assumed to
be small categories. If C denotes a category, then the set of objects of C will be denoted by
Ob(C), and the set of morphisms from an object x to an object y will be denoted by C(x, y).

1.1. Modules over a category. The representation theory of categories appears for in-
stance in the study of quivers and correspondence functors (see [BT18, Section 2] and
[Web07]). For convenience, we provide here a definition of modules and free modules over
a category.

Definition 1.1. Let C be a category. A ZC-module (or C-module) is a contravariant
functor from C to the category Ab of abelian groups. Equivalently, a ZC-module is given by
a contravariant additive functor ZC → Ab.

LetM be a ZC-module. Every x ∈ Ob(C) is mapped to an abelian groupMx. A morphism
f : x → y induces a morphism M(f) : My → Mx. For a ∈ My, we denote f.a instead of
M(f)(a). This element lies in Mx.

Let g ∈ C(y, z). By definition of a contravariant functor, and because of our convention
for composition of arrows in C (which is different from the composition in Ab), we have
M(fg) =M(f) ◦M(g). In our notation for M(f), we get

∀a ∈Mz, f.(g.a) = (fg).a.

Example 1.2. One can always consider Z as a trivial C-module by considering the functor
mapping every object to Z and every morphism to the identity in Z.

Remark 1.3. Another point of view, usually adopted in the representation theory of quivers,
is to consider the algebra A generated as a ring by all morphisms in C, and with relations

fg =

{
f ◦ g if the source of g is the target of f

0 otherwise

This point of view is in fact equivalent to ours. Indeed, considering a C-module M , the
abelian group

⊕
x∈Ob(C)Mx naturally comes equipped with a A module structure.

Proposition-Definition 1.4. We denote by ZC −mod the category of ZC-modules, where
the morphisms are the natural transformations between functors (if M,N are C-modules, we
denote by HomC(M,N) the corresponding set of morphisms in ZC −mod). Since Ab is an
abelian category, the category ZC −mod is an abelian category.

As we want to consider free resolutions in the category ZC − mod, we first define a
notion of free module over C. Consider the category SetOb(C) of families of sets indexed by
objects of C. The morphisms between two families {Sx}x∈Ob(C) and {Tx}x∈Ob(C) are given
by families of (set-theoretic) maps {φx : Sx → Tx}x∈Ob(C).

The category ZC−mod is endowed with a forgetful functor to SetOb(C), sending a functor
M to the family {Mx}x∈Ob(C). We construct a free functor, adjoint to this forgetful functor.

Let S := {Sx}x∈Ob(C) be a family of sets. For x ∈ Ob(C), we define F (S)x as the free
abelian group over the set

(CS)x := {(g, s) | g : x→ y and s ∈ Sy}.
Then, for a morphism f : x → y, the morphism F (S)(f) : F (S)y → F (S)x is defined on
(CS)y by

(g, s) 7→ (fg, s) ∈ (CS)x
and then extended to F (S)y by linearity.
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If φ = {φx}x∈Ob(C) : {Sx}x∈Ob(C) → {Tx}x∈Ob(C) is a morphism in SetOb(C). We get maps

Cφx : (CS)x −→ (CT )x
(g, s) 7−→ (g, φ(s))

which induce a morphism F (φ) of ZC-modules between F (S) and F (T ).

Lemma 1.5. The functor F : SetOb(C) → ZC −mod constructed above is left-adjoint to the
forgetful functor ZC −mod → SetOb(C).

Proof. Let S = {Sx}x∈Ob(C) be a family of sets and let M be a ZC-module. If φ : S →
{Mx}x∈Ob(C) is a morphism in SetOb(C), then the formula

∀x ∈ Ob(C),
∑

gs ∈ F (S)x, ηx

(∑
gs
)
=

∑
gφ(s) ∈Mx

yields a natural transformation η : F (S) ⇒ L, which is uniquely determined by φ. Con-
versely, if η : F (S) ⇒M is a natural transformation, then defining φ(s) := ηx(s) for s ∈ Sx
induces a morphism φ : S → {Mx}x∈Ob(C) in SetOb(C).

The applications η 7→ φ and φ 7→ η are inverse bijections, which give the desired adjunc-
tion. □

Example 1.6. Let x0 ∈ Ob(C), the hom functor C(−, x0) is the free functor over the family
{Mx}x∈Ob(C) where

Mx =

{
∅ if x ̸= x0

{∗} if x = x0

In this case, the adjunction formula can be seen as a consequence of the Yoneda Lemma.

Lemma 1.7. Free modules over C, in the sense defined above, are projective objects in the
category ZC −mod

Proof. Let S = {Sx}x∈Ob(C) be a family of sets. Let also ε : M ↠ N be an epimorphism
of C-modules, and let η : F (S) → N be a morphism of C-module. We want to construct a
morphism µ : F (S) →M such that εµ = η.
By adjunction, the morphism η induces, for each x ∈ Ob(C), a map η′x : Sx → Nx. As
C − mod is a functor category, stating that ε is an epimorphism amounts to saying that,
for all x ∈ Ob(C), εx is an epimorphism of abelian groups, in particular it is onto. We can
thus construct a map µ′x : Sx → Mx such that ε′x ◦ µ′x = η′x. Considering the morphism µ
induced by µ′ in the adjunction gives the desired result. □

Remark 1.8. In Section 2.1, we will construct a free resolution of the trivial module over a
Gaussian category C. This last lemma shows that such a free resolution is indeed a projective
resolution suitable for homology computations.

1.2. Tensor product. In order to define the homology of a category C with coefficients in a
C-module M , we need to define a tensor product which extends the usual tensor product of
modules. This definition is an immediate generalization of the construction given in [Mit72,
Section 6] (which only considers Z, C-bimodules and C,Z-bimodules).

Let C,D, E be categories. A C,D-bimodule is a functor C ×Dop → Ab. The morphisms
of bimodules between two C,D-bimodules M and N will be denoted by HomC,D(M,N).

Let M and N be a C,D-bimodule and a D, E bimodule, respectively, and let (x, z) ∈
Ob(C × Eop). We define

Px,y :=
⊕

z∈Ob(D)

Mx,z ⊗Z Mz,y.

The image of (x, y) under the functor M ⊗C N is then defined as the quotient of Px,y by all
relations of the form ad⊗ b = a⊗ db where d ∈ D(z, z′), a ∈Mx,z, b ∈Mz′,y.

A morphism c ∈ C(x, x′) acts by f.(a ⊗ b) := (fa) ⊗ b. A morphism e ∈ E(y, y′) acts by
(a⊗ b).e := a⊗ (be).
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Like in the usual case, we recover an adjunction between the tensor product and the Hom
functor. This adjointness property directly gives right-exactness of the tensor product.

Proposition 1.9. Let M,N,Q be a C,D-bimodule, a D, E-bimodule and a C, E-bimodule,
respectively. We have

HomC,E(M ⊗C N,Q) ≃ HomD,E(N,HomC(M,Q))

where HomC(M,Q) denotes the D, E bimodule sending z, y to HomC(M.,z, Q.,y).
This isomorphism is natural and induces an adjunction.

Proof. Let η : M ⊗C N → Q be a natural transformation of functors. Let also (x, y) ∈
Ob(C × Eop), c ∈ C(x′, x) and e ∈ E(y, y′). We have a commutative square

(M ⊗C N)x,y
ηx,y //

(M⊗CN)(c,e)

��

Qx,y

Q(c,e)

��
(M ⊗C N)x′,y′ ηx′,y′

// Qx′,y′

which we summarize in the following formula : η(ca⊗ be) = c.η(a⊗ b).e for all a ∈ M and
b ∈ N .

Let now b ∈ Nz,y for some z ∈ Ob(D) and some y ∈ Ob(E). For x ∈ Ob(C), we have a
morphism

φ(b)x : Mx,z −→ Qx,y

a 7−→ η(a⊗ b)

which induces a natural transformation φ(b) :M.,z ⇒ Q.,y.
Conversely, for ψ ∈ HomD,E(N,HomC(M,Q)), we have a natural transformation ε :M⊗C

N ⇒ Q given by
εx,y : (M ⊗N)x,y −→ Qx,y

a⊗ b 7−→ ψ(b)x(a)

which gives the inverse bijection. □

Corollary 1.10. Let N be a D, E bimodule, then the functor − ⊗D N : C − mod − D →
C −mod− E is a right-exact functor.

In particular we can define TorZDn (−, N) to be the n-th left-derived functor of the tensor
product −⊗D N .

Definition 1.11. Let C,D be categories, and letM be a C,D-bimodule. The n-th homology
group of C with coefficients in M is defined as

Hn(C,M) := TorZCn (Z,M)

It is endowed with a structure of (right)-D-module.

In the case where C = G is a group, and A is a ZG-module, we recover the classical
definition of the homology of G with coefficients in A. In this case, one can check that
Z⊗ZG − is isomorphic to the functor of coinvariants, sending a ZG-module A to

AG := A
/
⟨g.a− a | g ∈ G, a ∈ A⟩

(see for instance [Wei94, Section 6.1]).
Back to the general case, if we specialize the above definition to the case where D = Z,

then the tensor product Z ⊗ZC M is constructed by considering the quotient of the direct
sum

P :=
⊕

z∈Ob(C)

Mz

by all relations of the form f.a = a for a ∈Mz and f ∈ C(−, z). We see that this construction
is reminiscent of the functor of coinvariants in group homology.
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Remark 1.12. The arguments of [Wei94, Section 6.5] can be adapted to give a notion of “bar
resolution” for categories. The bar resolution induces in turn a canonical resolution of the
trivial ZC-module.

1.3. Category, groupoid and group. Just like for monoids, one can construct the en-
veloping groupoid G(C) of a category C by formally inverting all the morphisms of C (see
[Deh+15, Section II.3.2]). Depending on the properties of C, the enveloping groupoid G(C)
can be more or less hard to describe. In particular there is no reason that the homology of
C should be the same as that of G(C).
Example 1.13. ([McD79, Theorem 1]) Every path-connected space has the same weak ho-
motopy type as the classifying space of some discrete monoid. This is obviously false if
we replace “monoid” by “group”, since the classifying space of a discrete group is always a
K(π, 1) space.

Let C be a category, and let G := G(C) be its enveloping groupoid. As G and C have the
same set of objects, one can consider ZG as a G, C bimodule, sending a pair of objects (x, y)
to ZG(x, y).

We have a “scalar restriction” functor ZG−mod → ZC−mod coming from the canonical
functor C → G. We also have an “inversion of scalars” functor ZC − mod → ZG − mod
given by ZG ⊗C −.

Lemma 1.14. For every category C, the scalar inversion functor ZC −mod → ZG −mod
is left-adjoint to the scalar restriction functor ZG −mod → ZC.
Proof. This comes from the tensor-hom adjunction of Proposition 1.9. Let M and Q re-
spectively be a C-module and a G-module. We have

HomG(ZG ⊗C M,Q) ≃ HomC(M,HomG(ZG, Q)).

The C-module HomG(ZG, Q) is isomorphic to the scalar restriction functor (by the Yoneda
Lemma). □

This lemma is somewhat reminiscent of the Frobenius reciprocity. Except here, instead
of inducing from a subgroup to an ambient group, we start from a category and we induce
to its enveloping groupoid. This adjointness property implies in particular that the functor
ZG ⊗C − is right-exact.

We want a condition under which the scalar inversion functor is not only right-exact
(which always holds), but also left-exact. This would ensure that this functor preserves
homology. A good such condition is given by the notion of an Ore category.

Definition 1.15. ([Deh+15, Definition II.1.14 and Definition II.3.10])
We say that a category C is

- left-cancellative(resp. right-cancellative) if every relation fg = fg′ (resp. gf = g′f)
with f, g, g′ ∈ C implies g = g′. The category C is cancellative if it is both left- and
right-cancellative.

- a left-Ore category if it is cancellative and any two elements with the same target admit
a common left-multiple.

This classical notion allows for a convenient description of the enveloping groupoid G(C)
in terms of left-fractions.

Lemma 1.16. ([Deh+15, Proposition II.3.11])
If C is a left-Ore category, then the enveloping groupoid G of C can be described as a groupoid
of fractions: the functor C → G is injective on morphisms and every morphism in G has the
form f−1g for some f, g ∈ C.

This convenient description of the morphisms G(C) has a remarkable consequence on
modules of the form ZG(x,−) ⊗C − for x ∈ Ob(C). This in turn induces the exactness of
the scalar inversion functor ZG ⊗C −.
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Proposition 1.17. Let x ∈ Ob(C). If C is a left-Ore category, then the right C-module
ZG(x,−)⊗C − is a direct limit of free C-modules. In particular it is a flat module.

Proof. Our argument is a categorical rephrasing of the proof of [Squ94, Theorem 2.3].
For every morphism f ∈ C(y, x), precomposition by f−1 induces a morphism of right

C-module φf : ZC(y,−) → ZG(x,−). Since C is a left-Ore category, every morphism in
G(x,−) can be described as a fraction. This means that G(x,−) is the union of the images
of the morphisms φf for f ∈ C(−, x). Furthermore, the system given by the φf is a directed
system because of the existence of left-multiples.

Just like in the usual case, the functor Tor commutes with inductive limits, which gives
the flatness of ZG(x,−). □

Theorem 1.18. Let C be a left-Ore category with enveloping groupoid G. The G, C-bimodule
ZG is a flat C-module.

Proof. We already know that, as a left-adjoint, the functor ZG ⊗C − is right-exact. We only
have to show that it is left-exact, that is it preserves kernels.
Let M be a C-module, the abelian group ZG(x,−)⊗C M is a quotient of the direct sum⊕

y∈C
ZG(x, y)⊗Z My

We see that the abelian group ZG(x,−)⊗CM is the image of x under the functor ZG⊗CM .
As kernels in a functor category are computed objectwise, the flatness of ZG(x,−) induces
the flatness of ZG as claimed. □

This is the exactness property we were looking for. A first consequence is that, under the
assumption that C is left-Ore, the scalar inversion functor preserves homology.

Corollary 1.19. Let C be a left-Ore category. For every C-module M and every n ∈ Z⩾0

we have Hn(C,M) = Hn(G(C),ZG ⊗C M).

Proof. LetM be a C-module. By definition we have Hn(C,M) = TorZCn (Z,M). By Theorem
1.18, this is equal to TorZGn (Z,ZG ⊗ZC M) = Hn(ZG,M). □

Now that we have equality between the homology of a category and that of its envelop-
ing groupoid (under suitable assumptions), we want equality between the homology of a
groupoid and that of a group to which it is equivalent as a category.

Let G be a groupoid, that we assume to be connected from now on. We also fix an object
x0 ∈ Ob(G) and set G := G(x0, x0).

We denote by ι the inclusion functor G → G. The choice, for every x ∈ Ob(G), of a
morphism ux ∈ G(x0, x) induces a functor π : G → G, sending f : x → y to uxfu

−1
y ∈ G.

The functors ι and π are quasi-inverse equivalences of categories. Indeed π ◦ ι is the identy
morphism of G, and ι ◦ π is fully faithful, and essentially surjective since G is a connected
groupoid. The equivalences ι and π induce in turn equivalences between the categories of
G-modules and of G-modules.

In practice, if M is a G-module, then the induced G-module sends every object to M and
a morphism f acts by uxfu

−1
y . We also denote this module by M .

Proposition 1.20. Let G be a connected groupoid, equivalent to a group G. For every
G-module M and every n ∈ Z⩾0 we have Hn(G,M) = Hn(G,M).

Proof. The functor π : G → G induces an equivalence of categories π∗ : ZG −mod → ZG,
which is in particular an exact functor. For a G-module M , we get

Hn(G,M) = TorZGn (Z,M)

= TorZGn (π∗(Z), π∗(M))

= TorZGn (Z,M) = Hn(G,M)

as claimed. □



DEHORNOY-LAFONT ORDER COMPLEX FOR CATEGORIES 9

2. The Dehornoy-Lafont order complex for categories

Garside categories were originally introduced as a natural generalization of Garside mon-
oids (see for instance [Kra08]). A comprehensive survey of the general theory of Garside
categories is done in [Deh+15].

One of the (many) uses of a Garside structure on a category is that it gives rise to
convenient resolutions allowing for the computation of the homology of the category (see
[Deh+15, Section III.3.4]). These resolutions, are generalizations of previous works on
Garside monoids (see [DL03] and [CMW04]).

However, the order complex of Dehornoy and Lafont, which we will call the Dehornoy-
Lafont complex from now on, has not been adapted to the case of a category in [Deh+15].
This complex (in the case of a monoid) is smaller in size, so it is usually more suitable
for practical purposes. We propose in this section a generalization of this complex to a
categorical setting.

2.1. The complex. In the case of a monoid, the Dehornoy-Lafont complex was introduced
in [DL03, Section 4] under the name “order resolution”. It is based on a well-ordering of
some generating system of the monoid. Although we plan to apply this new complex to a
Garside category, the definition can be formulated in a slightly more general case mimicking
the definition of Gaussian monoid.

We start with a small category C. We define a relation ⪯ on C(x,−) by

∀f, g ∈ C(x,−), f ⪯ g ⇔ ∃h | fh = g.

In particular, the source of h must be the target of f , and its target must be the target of
g. We say that g is a right-multiple of f and that f left-divides g. Likewise, one can define
a relation ⪰ on C(−, x).

The relation ⪯ is obviously reflexive and transitive. But it is not necessarily antisym-
metric: if x is an invertible morphism, then we have x ≺ 1 ≺ x. Because of this we always
require C to have no nontrivial invertible morphism from now on.

Definition 2.1. ([Deh+15, Definition II.2.26])
Let C be a category with no nontrivial invertible morphisms. The category C is said to
be right-Noetherian (resp. left-Noetherian) if the relation ⪯ (resp. ⪰) admits no
infinite strictly descending chain. The category C is Noetherian if it is both left-and right-
Noetherian.

Remark 2.2. The definition stated in [Deh+15] is slightly broader than the one we state
here, as the authors need to consider the case where C admits nontrivial isomorphisms. In
the case studied here where C× is reduced to the identities, the two definitions coincide.

If C is left-cancellative and left-Noetherian (and C× is reduced to the identity morphisms),
then one can see that ⪯ is a partial order. Likewise, ⪰ is a partial order if C is right-
cancellative and right-Noetherian (and C× is reduced to the identity morphisms).

Following [Deh+15, Definition II.2.52], a morphism a ∈ C is called an atom if its only
left-divisors are itself and the identity. If C is Noetherian, then every morphism in C is a
composition of a finite number of atoms. In this case we also get that a subfamily of C
generates C if and only if it contains all of the atoms of C.

Definition 2.3. ([Deh+15, Definition II.2.9 and Definition II.2.20])
Let C be a category, and let f, g be two morphisms with the same target. A left-lcm of f
and g is a common left-multiple of f and g which right-divides any left-multiple of f and g.
The category C admits conditional left-lcms if any two elements of C that admits a com-
mon left-multiple admit a left-lcm.
Following [DL03, Section 1.1], a right-cancellative right-Noetherian category which admits
conditional left-lcms is called locally left-Gaussian. If C furthermore admits left-lcms, C
is called left-Gaussian.
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Remark 2.4. A Garside category, that is a cancellative Noetherian category endowed with
a Garside map (see [Deh+15, Definition V.2.19]), is in particular a Gaussian category. This
is why we can apply the Dehornoy-Lafont complex to Garside categories.

From now on, we consider a locally left-Gaussian category C. The proofs and construction
are direct adaptations of the arguments of [DL03, Section 4] to the case of a category.

We start by fixing a finite set of morphisms A, which generates C. We also fix, for every
object x of C, a linear ordering < on the set A(−, x) of elements of A with target x. In
practice this amounts to fixing a linear ordering on the set A, that we then restrict to the
sets A(−, x).

For every morphism f ∈ C, the set of elements of A dividing f on the right is ordered by
<. Since A is finite, one can define md(f) to be the <-least right-divisor of f in A.

Definition 2.5. Let n be an integer. A n-cell is a n-tuple [α1, . . . , αn] of elements of A
sharing the same target such that α1 < . . . < αn and

∀i ∈ [[1, n]], αi = md(lcm(αi, . . . , αn))

We say that a n-cell [α1, . . . , αn] has source x ∈ Ob(C) if x is the source of lcm(α1, . . . , αn).
For x ∈ Ob(C), we define (Xn)x to be the set of n-cells with source x.

We define Cn to be the free ZC-module associated to the family {(Xn)x}x∈Ob(C)

In particular we see that, for each object x, we have (X0)x = {[∅]} and (X1)x = A(x,−).
To avoid confusion, we will alternatively denote by [∅]x the only element of (X0)x.

Let x be an object of C. By definition of a free module over a category (see Section 1.1),
(Cn)x is generated as an abelian group by elements of the form f [A], where f ∈ C(x, y) and
[A] is a n-cell with source y. We call such elements elementary n-chains.

Like in the case of a monoid, the following preodering on elementary n-chains will allow
us to use induction arguments.

Definition 2.6. We denote by A1 the first element of a nonempty tuple [A]. Let f [A] and
g[B] be elementary n-chains with same source. We say that f [A] ⊏ g[B] holds if we have
either f lcm(A) ≺ g lcm(B) or n > 0, f lcm(A) = g lcm(B) and A1 < B1.
If

∑
fi[Ai] is an arbitrary n-chain, we say that

∑
fi[Ai] ⊏ g[B] holds if fi[Ai] ⊏ g[B] holds

for every i.

Lemma 2.7. For every n, the relation ⊏ on n-dimensional elementary chains with same
source is compatible with multiplication on the left, and it has no infinite decreasing sequence.

Proof. Assume f [A] ⊏ g[B], and let h be a morphism in C. Then f lcm(A) ≺ g lcm(B)
implies hf [A] ≺ hg[B], and f lcm(A) = g lcm(B) implies hf lcm(A) = hg lcm(B). We have
hf [A] ⊏ hg[B] in each case.

Let now . . . ⊏ f2[A2] ⊏ f1[A1] be a descending sequence. We have a descending sequence
. . . ⪯ f2 lcm(A2) ⪯ f1 lcm(A1). The left-Noetherianity of C gives that this sequence is
stationary: there is some i0 such that we have fi lcm(Ai) = fi+1 lcm(Ai+1) for i ⩾ i0. By
definition of ⊏, we must have (Ai+1)1 < (Ai)1 for i ⩾ i0. The sequence (Aj)1 for j ⩾ i0
is <-decreasing. But (Ai)1 right-divides lcm(Ai) and fi lcm(Ai). So the sequence (Aj)1 for
j ⩾ i0 is a <-decreasing sequence of divisors of fi0 lcm(Ai0). The sequence (Aj)1 thus is
stationary, and the sequence fi[Ai] is stationary. □

We will now define the differential map ∂n : Cn → Cn−1 along with a contracting homo-
topy sn : Cn → Cn+1 and a so-called reduction map rn : Cn → Cn. The map ∂n is ZC-linear,
whereas sn and rn are only Z-linear.

Definition 2.8. Let f [A] be an elementary chain. We say that f [A] is irreducible if either
f [A] = 1x[∅]x or A1 = md(f lcm(A)). Otherwise we say that f [A] is reducible.
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The construction of ∂∗, r∗ and s∗ uses induction on n. The induction hypothesis, denoted
(Hn) is the conjunction of the following two statements, where rn := sn−1 ◦ ∂n

(Pn) ∂n(rn(f [A])) = ∂n(f [A])

(Qn) rn(f [A])

{
= f [A] if f [A] is irreducible

⊏ f [A] if f [A] is reducible

In degree 0, the construction is usual and straightforward: we define ∂0 : C0 → Z and
s−1 : Z → C0 by

∀x ∈ Ob(C), ∂0([∅]x) := 1 and s−1(1) = [∅]x

Lemma 2.9. Property (H0) is satisfied.

Proof. The mapping r0 := s−1 ◦ ∂0 is Z-linear with
r0(f [∅]x) = s1(∂0(f [∅]x)) = [∅]y

for f ∈ C(y, x). Hence we obtain

∂0(r0(f [∅]x)) = ∂0([∅]y) = 1, ∂(f [∅]x) = f.1 = 1

because of the structure of the trivial C-module Z. Thus (P0) holds. For (Q0), we know
that an elementary 0-chain f [∅]x is irreducible if and only if f = 1x, in which case we have
r0(f [∅]x) = r0([∅]x) = [∅]x. Otherwise, we have r0(f [∅]x) = [∅]y ⊏ f [∅]x by definition.
Thus (Q0) also holds. □

We now assume that (Hn) is satisfied, in particular we assume that both ∂n and rn have
been constructed. We must now define

∂n+1 : Cn+1 → Cn, sn : Cn → Cn+1, rn+1 = sn ◦ ∂n+1 : Cn+1 → Cn+1

and show that (Hn+1) is satisfied. In the sequel, we use the notation [α,A] to write (n+1)-
cells. By definition, saying that [α,A] is a (n + 1)-cell amounts to saying that A is a
n-cell and α = md(lcm(α,A)). We denote by α/A the morphism defined by the equation
(α/A) lcm(A) = lcm(α,A).

Definition 2.10. • We define the morphism of ZC-module ∂n+1 : Cn+1 → Cn by

∂n+1([α,A]) := α/A[A]− rn(α/A[A])

• We inductively define the Z-linear map sn : Cn → Cn+1 by

sn(f [A]) :=

{
0 if f [A] is irreducible

g[α,A] + sn(grn(α/A[A])) otherwise, with α = md(f lcm(A)) and f = gα/A

• Finally, we define rn+1 : Cn+1 → Cn+1 by rn+1 = sn ◦ ∂n+1.

We can first notice that, under these definitions, ∂n+1, sn and rn all preserve the source
of n-cells.

The definition of ∂n+1 is direct (since rn has been constructed in order to satisfy property
(Hn)). The definition of sn is inductive and we must check that it is well founded. Let f [A]
be a reducible chain. The chain α/A[A] appearing in the definition of sn is also reducible
since α < A1 holds by definition. Thus (Qn) gives rn(α/A[A]) ⊏ α/A[A] and

grn(α/A[A]) ⊏ gα/A[A] = f [A].

Since the relation ⊏ admits no infinite decreasing sequence, the definition of sn (and of
rn+1) is then well founded.

We can also check that ∂∗ induces a chain complex. Let [α,A] be a (n+ 1)-cell, we have

∂n∂n+1[α,A] = ∂n(α/A[A])− ∂n(rn(α/A[A])) = 0

because of (Pn).
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The following lemma is useful for showing that (Hn) implies (Pn+1), but it also contains
the information that (sn) provides a contracting homotopy for the Dehornoy-Lafont complex
(see the proof of Proposition 2.15).

Lemma 2.11. Let f [A] be an elementary n-chain. Assuming (Hn) we have

∂n+1sn(f [A]) = f [A]− rn(f [A])

Proof. We use a ⊏-induction on f [A]. If f [A] is irreducible, then by (Qn) we have

∂n+1sn(f [A]) = 0 = f [A]− rn(f [A]).

Assume now that f [A] is reducible. With the notation of Definition 2.10, we obtain

∂n+1sn(f [A]) = g∂n+1([α,A])− ∂n+1sn(grn(α/A[A])).

By (Qn), we have grn(α/A[A]) ⊏ f [A], so the induction hypothesis gives us

∂n+1sn(grn(α/A[A])) = grn(α/A[A])− rn(grn(α/A[A])).

Applying (Pn) we deduce

rn(grn(α/A[A])) = sn−1(g∂n(rn(α/A[A])))

= sn−1(g∂n(α/A[A]))

= rn(gα/A[A]) = rn(f [A]).

And so

∂n+1sn(f [A]) = gα/A[A]− grn(α/A[A] + grn(α/A[A])− rn(f [A]) = f [A]− rn(f [A])

as expected. □

Lemma 2.12. Assuming (Hn), (Pn+1) is satisfied.

Proof. Let [α,A] be an elementary (n+ 1)-chain. We find

∂n+1(rn+1(f [A])) = ∂n+1sn∂n+1(f [A])

= ∂n+1(f [A])− rn(∂n+1(f [A]))

= ∂n+1(f [A])− sn−1∂n∂n+1(f [A])

= ∂n+1(f [A])

□

Before we show that (Hn) implies (Hn+1), we need the following lemma, which substan-
tiates the behavior of sn relative to ⊏.

Lemma 2.13. Let f [α,A] be a reducible (n + 1)-chain. For each reducible n-chain g[B]
satisfying g lcm(B) ⪯ f lcm(α,A), we have sn(g[B]) ⊏ f [α,A].

Proof. We use ⊏-induction on g[B]. By definition we have

sn(g[B]) = h[β,B] + sn

(∑
hi[Ci]

)
with β = md(g lcm(B)), g lcm(B) = h lcm(β,B) and

∑
hi[Ci] = hrn(β/B[B]). Furthermore,

since we know that hrn(β/B[B]) ⊏ g[B], we always have hi[Ci] ⊏ g[B], hence in particular,
hi lcm(Ci) ⪯ g lcm(B) ⪯ f lcm(α,A). The induction hypothesis gives sn(hi[Ci]) ⊏ f [α,A]
if hi[Ci] is reducible. If hi[Ci] is irreducible, then the contribution of sn(hi[Ci]) = 0 to the
sum defining sn(hrn(β/B[B]) is trivial. In both cases, it only remains to compare h[β,B]
and f [α,A].

Two cases are possible. Assume first g lcm(B) ≺ f lcm(α,A). By construction, we have
h lcm(β,B) = g lcm(B), so we deduce h lcm(β,B) ≺ f lcm(α,A) and therefore h[β,B] ⊏
f [α,A].

Assume now g lcm(B) = f lcm(α,A). By construction, β is the <-least right-divisor of
g lcm(B), hence of f lcm(α,A). The hypothesis that f [α,A] is reducible means that α is a
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right-divisor of the latter element, but is not its least right-divisor, so we must have β < α.
This gives h[β,B] ⊏ f [α,A] by definition. □

Lemma 2.14. Assuming (Hn), (Hn+1) is satisfied.

Proof. By Lemma 2.12, it only remains to prove (Qn+1). Let f [α,A] be an elementary
(n+ 1)-chain. By definition, we have

rn+1(f [α,A]) = sn(fα/A[A])− sn

(∑
gi[Bi]

)
with

∑
gi[Bi] = frn(α/A[A]). If f [α,A] is irreducible, then we have α = md(x lcm(α,A)).

The definition of sn gives

sn(fα/A[A]) = f [α,A] + sn

(∑
gi[Bi]

)
and we deduce rn+1(f [α,A]) = f [α,A].

Assume now that f [α,A] is reducible. First, we have fα/A lcm(A) = f lcm(α,A), so
Lemma 2.13 gives sn(fα/A[A]) ⊏ f [α,A]. Since α = md(lcm(α/A, A) < A1, the chain
α/A[A] is reducible, so property (Qn) gives rn(α/A[A]) ⊏ α/A[A]. Hence Lemma 2.7 gives
xrn(α/A[A]) ⊏ fα/A[A], i.e, gi[Bi] ⊏ fα/A[A] for all i. This implies in particular gi lcm(Bi) ⪯
fα/A lcm(A) = f lcm(α,A). Applying Lemma 2.13 to gi[Bi] gives sn(gi[Bi]) ⊏ f [α,A]. We
deduce that rn+1(f [α,A]) ⊏ f [α,A], which is property (Qn+1). □

Thus, the induction hypothesis is maintained, and the construction can be carried out. We
can now state the main result of this section: the Dehornoy-Lafont complex for a Gaussian
category provides a free resolution of the trivial module.

Proposition 2.15. Let C be a locally left-Gaussian category. The complex (C∗, ∂∗) is a free
resolution of the trivial ZC-module Z.

Proof. We already have seen that (C∗, ∂∗) is a complex of ZC-modules. The formula of
Lemma 2.11 rewrites into

∂n+1sn + sn+1∂n = 1

which shows that s∗ is a contracting homotopy. □

Combining this proposition and Theorem 1.18, we get an analogue for groupoids. This is
the result we will use in Section 3.

Proposition 2.16. Let C be a cancellative left-Gaussian category. The complex
(ZG(C)⊗ZC C∗, ∂∗) is a free resolution of the trivial ZG-module Z.

2.2. Reduction of computations. Let C be a locally left-Gaussian category, and let A
be a finite set of morphisms of C which generates C. The Dehornoy-Lafont complex depends
on the one hand on the structure of C as a category, and on the other hand on the linear
order chosen on A. Here we propose a computationally efficient solution for constructing
an order on A yielding few 2-cells. This order is not optimal a priori (even for minimizing
the number of 2-cells), but it gives good results in practice.

Let x be an object of C. We first consider the set Lx of all elements of C(−, x) which are
the lcm of a pair of distinct elements of A. Our strategy is, for each ℓ ∈ Lx, to try to reduce
the number of two cells [a, b] with a ∨ b = ℓ.

Let ℓ be in Lx. One can consider Aℓ the set of elements of A which right-divide ℓ. This
set is included in ⊂ A(−, x) by definition. For a ∈ Aℓ, we set n(a, ℓ) to be the cardinality
of the following set

{b ∈ Aℓ | a ∨ b = ℓ}.
If a is the <-minimum of Aℓ, then there are precisely n(a, ℓ) 2-cells of the form [a, b] with
a ∨ b = ℓ. In particular we deduce the following lemma.
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Lemma 2.17. Let x be an object of C. A lower (resp. upper) bound for the number of
2-cells made of elements of A with target x is given by∑

ℓ∈Lx

min
a∈Aℓ

n(a, ℓ)

resp. ∑
ℓ∈Lx

max
a∈Aℓ

n(a, ℓ)


In practice, these bounds may or may not be reached.

Definition 2.18. Let x be an object of C and let ℓ ∈ Lx. For a ∈ Aℓ, the condition on
A(−, x) associated to a and ℓ is the set-theoretic relation

{(a, b) | b ∈ Aℓ} ⊂ A(−, x)×A(−, x)
We say that such a condition is optimal if we furthermore have

n(a, ℓ) = min
b∈Aℓ

n(b, ℓ).

We say that a family of conditions is compatible if their union is a subrelation of an order
on A(−, x).

We can first check that the reflexive closure of a condition is always an order. It is
also obvious that two different conditions associated to a same element ℓ ∈ Lx are never
compatible: it would mean that Aℓ has two distinct minima.

Testing if a family of conditions is compatible only amounts to testing whether or not its
reflexive transitive closure is antisymmetric. This is easy to test in practice due to the form
of conditions as set-theoretic relations.

In order to get an adequate order, we try and find a maximal family of compatible
conditions yelding few 2-cells. We propose the following procedure (a detailed code is
available at https://github.com/ogarnier/dehornoy_lafont_computations.git) :

1. Set C := ∅.
2. Compute Comp(C) the set of conditions on A(−, x) which are compatible with C.
3. While Comp(C) ̸= ∅ do

- Choose a condition (a, ℓ) in Comp(C) which minimizes the quantity

n(a, ℓ)− min
b∈Aℓ

n(b, l).

- Add (a, ℓ) to C.

The result of this procedure is a maximal family of compatible conditions. This family then
induces an order which can be refined into a linear order over A(−, x). Since a choice is
made at each step of this procedure, it is very hard to check wether or not the resulting
order is optimal for minimizing the number of 2-cells. The condition chosen at the n-th step
could for instance be incompatible with an optimal condition at the n + 1-th step, which
would force us to fall back on a less good condition. This would give us an order with more
2-cells that if we reversed the steps n+1 and n. Nevertheless, we will see in the next section
that this procedure gives rather good results in practice.

Another computational issue arising from the Dehornoy-Lafont complex is the computa-
tion of the differential. Since this differential is defined recursively and using the auxiliary
morphisms rn and sn, its calculation may lead to a lot of redundancy.

A first solution is to stock the results of ∂n applied on the cells and then use the ZC-
linearity of ∂n. Unfortunately, one cannot do the same for sn and rn as they are not
ZC-linear, but only Z-linear. One would theoretically have to stock the results of rn and sn
applied to every elementary chain, and not only to cells. But, in practice, rn need only be
calculated on chains of the form α/A[A], where [α,A] is a cell (see Definition 2.10). So we
can also store the results of rn on chains of this form to avoid redundant computations.

https://github.com/ogarnier/dehornoy_lafont_computations.git
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3. Homology computations for exceptional complex braid groups

We are now going to use the Dehornoy-Lafont complex to compute the homology of excep-
tional complex braid groups. Recall that a complex reflection group W is a finite subgroup
of GLn(C) generated by (pseudo-)reflections, that is finite order automorphisms of Cn which
pointwise fixes some hyperplane (see [LT09]). We associate to W the complementary X of
the arrangement of all reflecting hyperplanes associated to the reflections of W . The action
of W on X is free and induces a covering map from X to X/W . The complex braid group
B(W ) (resp. the pure complex braid group P (W )) is then defined as the fundamental group
of X/W (resp. of X). The braid group B(W ) is generated by so-called braid reflections,
and it admits a length morphism B(W ) → Z, defined by σ 7→ 1 for every braid reflections
σ ([BMR98, Proposition 2.2 and Proposition 2.16]).

Complex reflection groups are known to behave in a “semi-simple” way: they can be
decomposed as products of irreducible groups (meaning that their representations as sub-
groups of GLn(C) are irreducible). The same goes for complex braid groups, meaning that
we only need to consider braid groups of irreducible complex reflection groups.

Irreducible complex reflection groups were classified in 1954 by Shephard and Todd, with
an infinite series G(de, e, n) depending on three integer parameters, and 34 exceptional
groups, labelled G4, . . . , G37. Note, however, that two distinct reflection groups can have
isomorphic braid groups, for instance, the braid groups of G7 and G(12, 2, 2) are isomorphic.
This will prove useful in avoiding redundant computations (see Section 3.1).

The braid group of the exceptional group Gk will be denoted by Bk, it should not be
confused with the classical braid group on k strands, which will not be considered here. We
will restrict our attention to exceptional groups and their braid groups.

As the construction of the Dehornoy-Lafont complex relies on some underlying Gaussian
category (or monoid), we will use various Garside structures for exceptional braid groups
(see Remark 2.4).

Once we have computed the Dehornoy-Lafont complex, we will use it to compute the
homology of B(W ) with coefficients in the following modules M :

- M = Z is the trivial B(W )-module.
- M = Z, where the braid reflections of B(W ) act by −1. We denote this module by Zε,
we call it the sign representation of B(W ).

- M = k[t, t−1], where k is a field and the braid reflections of B(W ) act by t. We consider
the case where k = Q or k is some finite field.

As pointed out in [Cal05], the homology H∗(B(W ), k[t, t−1]) where k is a field can be
identified with the homology of the Milnor fiber of the singularity corresponding to W .

3.1. Isodiscriminantality. Let W and W ′ be two irreducible complex reflection groups.
By the Chevalley-Shephard-Todd Theorem (see [LT09, Theorem 3.20]), one can choose
a family of homogeneous polynomials f1, . . . , fn such that the algebra C[X1, . . . , Xn]

W of
W -invariant polynomials is a polynomial algebra generated by f1, . . . , fn. The sequence
f1, . . . , fn is called a system of basic invariants forW . The polynomial map f = (f1, . . . , fn) :

Cn → Cn induces a map f̂ : Cn/W → Cn which sends X/W to the complementary of an
algebraic hypersurface H. The hypersurface H is the image under f of the union of the
reflecting hyperplanes.

Consider W,W ′ ⩽ GLn(C) two complex reflection groups with two systems of basic
invariants f1, . . . , fn and f ′1, . . . , f

′
n for which the associated discriminant hypersurfaces are

the same. This choice induces a homeomorphism between the associated regular orbit spaces,
and an isomorphism B(W ) ≃ B(W ′) which sends braid reflections to braid reflections.
This last point gives that the actions of B(W ) and B(W ′) on Zε and k[t, t−1] are the
same and we only need to compute the associated homology for one representant of the
isodiscriminantality class.
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3.2. Coxeter groups and Artin groups. The first case we are going to consider is that
of complexified real reflection groups. We refer to [Bou81, Section IV.1] for classical results
about Coxeter groups and real reflection groups.

Consider (W,S) a Coxeter system of spherical type. For s, t ∈ S, we denote by ms,t

the order of st in W . The Artin group associated to (W,S) is defined by the following
presentation

A(W ) := ⟨S | ⟨s, t⟩ms,t = ⟨t, s⟩mt,s ∀s ̸= t⟩
where ⟨x, y⟩m denotes the product xyxy... with m terms.

It is known (see [Bri71]) that the braid group of W seen as a complex reflection group is
isomorphic to A(W ) (and this isomorphism sends the elements of S to braid reflections).

The presentation of A(W ) also gives rise to a monoid, denoted by M(W ). The monoid
M(W ) is always locally left-Gaussian, and since (W,S) is of spherical type, it is Gaussian
(see [DP99, Example 1]). The monoid M(W ) is the Artin monoid associated to the
Coxeter system (W,S).

The homology of Artin monoids has already been studied by Salvetti (see [Sal94]), and
by Squier (see [Squ94]). The approach of the latter was then generalized in [DL03, Section
4] into the order complex.

As we want to use solely the Dehornoy-Lafont complex in our computations, we give its
construction in the case of a Coxeter group.

If S′ is a subset of S, then the subgroup W ′ generated by S′ in W is also a spherical
Coxeter group. The Artin monoid M ′ associated to (W ′, S′) is the submonoid generated
by S′ in M . In particular the right-lcm of the elements of S′ lies inside M ′. So the atoms
right-dividing this lcm are precisely the elements of S′. We get the following lemma:

Lemma 3.1. Let (S,W ) be a Coxeter system of spherical type, with S = {s1, . . . , sn}. For
k be a positive integer, the k-cells for the Dehornoy-Lafont complex associated to (S,W ) are
given by

Xk := {[si1 , . . . , sik ] | 1 ⩽ i1 < . . . < ik ⩽ n} .
In particular the cardinality of Xk is

(
n
k

)
and does not depend on the choice of an order of

the atoms.

This is an extreme case where the tools of subsection 2.2 don’t apply. Indeed the lcm of
two distinct atoms s, t is always of the form ℓ = ⟨s, t⟩ms,t , with Aℓ = {s, t}. This means
that the two bounds of Lemma 2.17 are equal in this case.

The classical Artin monoid has the advantage of providing relatively few cells. Even for
the largest case (which is E8 ≃ G37), we have at most

(
8
4

)
= 70 cells (in rank 4). On the

other hand, the differential is often long to compute because of recursion: elements of the
form α/A may have great length, because the simple elements in the Artin monoids can have
length up to 120 in the case of E8.

As seen in the tables below, the case of the Artin monoids covers the exceptional groups
which are complexified real reflection groups:

B23 ≃ A(H3), B28 ≃ A(F4), B30 ≃ A(H4), B35 = A(E6), B36 = A(E7), B37 ≃ A(E8)

Furthermore, some exceptional groups are known to be isodiscriminantal to complexified
real reflection groups (see [OS88, Theorem 2.25] and [Ban76, Section 2]). Therefore the
study of Artin monoids also gives the homology of the following groups

B4, B5, B6, B8, B9, B10, B14, B16, B17, B18, B20, B21, B25, B26, B32

3.3. Exceptional groups of rank two. The next case we consider is that of exceptional
groups of rank two. Some of these groups are known to be isodiscriminantal to complexified
real groups, which we already considered in Section 3.2. This leaves the following groups:

B7, B11, B12, B13, B15, B19, B22.
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Among these, B7, B11 and B19 are isodiscriminantal (see [Ban76, Section 2]). In order to
study these various groups, we use ad hoc Garside monoids, which are all detailed in [Pic00,
Examples 11, 12, 13]. Most of these monoids are circular monoids:

B7 ≃ B11 ≃ B19 = ⟨a, b, c | abc = bca = cab⟩
B12 = ⟨a, b, c | abca = bcab = cabc⟩

B22 = ⟨a, b, c | abcab = bcabc = cabca⟩
These are group presentation, which can also be seen as monoid presentation. We amal-
gamate such a group presentation and the underlying monoid presented by the same data.
In these three monoids, one can see that the atoms play a symmetric role: changing the
ordering on the atoms does not affect the number of cells. Furthermore, as the lcm of two
distinct atoms is always the same, we get that there are only 1-cells and 2-cells (n cells of
rank 1 and n− 1 cells of rank 2 if n is the number of atoms).

For B13, we use the following monoid:

B13 = ⟨a, b, c | acabc = bcaba, bcab = cabc, cabca = abcab⟩.
Using the notations of Section 2.2, we have

ℓ1 := b ∨ c = bcab, ℓ2 := a ∨ b = a ∨ c = abcab

For ℓ1, we have Aℓ1 = {b, c} and n(b, ℓ1) = n(c, ℓ1) = 1, so there is no use in setting either
b < c or c < b. For ℓ2, we have Aℓ2 = {a, b, c} and n(a, ℓ2) = 2, n(b, ℓ2) = n(c, ℓ2) = 1. So
by considering the order c < a < b, we get one 1-cell, two 2-cells, and zero 3-cells. If we
instead consider the order a < b < c, we get three 2-cells instead of two.

Lastly, for B15, we use the monoid

B15 = ⟨a, b, c | abc = bca, cabcb = abcbc⟩
We have

ℓ1 = a ∨ c = abc, ℓ2 = b ∨ c = b ∨ a = abcbc

For ℓ1, we have Aℓ1 = {a, c} and n(a, ℓ1) = n(c, ℓ1) = 1, so there is again no use in setting a
priori that either a < c or c < a. For ℓ2, we have Aℓ2 = {a, b, c} and n(a, ℓ2) = n(c, ℓ2) = 1,
n(b, ℓ2) = 2. So we consider the order c < a < b in order to get as few cells as possible.

3.4. Well-generated exceptional groups. At this point, we still have six groups to con-
sider, and five of them are “well-generated” in the sense of [Bes15, Section 2]:

B24, B27, B29, B33, B34.

The monoid we use for these groups is the dual braid monoid (see [Bes15, Section 8]).
The main problem with these monoids is that they have many atoms, and so they give rise
to relatively big complexes. This is where the methods of Section 2.2 are most useful. The
bounds of Lemma 2.17 for the number of 2-cells are respectively given by

B24 B27 B29 B33 B34

Lower bound 38 60 120 213 630
Upper bound 40 65 158 302 1071

Applying the method of Section 2.2 to get a convenient order, we see in Table 1 that the
lower bounds are not always reached, but we obtain complexes which are quite smaller than
the ones in [Mar17, Table 1], especially for large groups.

Sadly, although we obtain a smaller complex for B34, it is not small enough to obtain
the results that were missing in [CM14] regarding H∗(B34,Q[t, t−1]). However, we were able
to compute H∗(B34, k[t, t

−1]) where k ranges among some finite fields. These computations
give us a reasonable conjecture regarding H∗(B34,Q[t, t−1]).
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0-cells 1-cells 2-cells 3-cells 4-cells 5-cells 6-cells
B24 [Mar17] 1 14 38 25

Optimized 1 14 38 25
B27 [Mar17] 1 20 62 43

Optimized 1 20 60 41
B29 [Mar17] 1 25 127 207 108

Optimized 1 25 125 209 108
B33 [Mar17] 1 30 226 638 740 299

Optimized 1 30 223 616 705 283
B34 [Mar17] 1 56 711 3448 7520 7414 2686

Optimized 1 56 646 2839 5691 5255 1812
Table 1. Compared size of the Dehornoy-Lafont complexes

3.5. The Borchardt braid group B31. The last exceptional group to consider is B31.
Although this groups does not appear (to our knowledge) as a group of fraction of some
Gaussian monoid, it is equivalent to the enveloping groupoid of some Garside category.
Indeed the complex reflection group G31 appears as the centralizer of some regular element
(in the sense of Springer) in the Coxeter group E8. Following the work of Bessis in [Bes15,
Section 11], this description gives rise to a Garside category C31, whose envelopping groupoid
B31 is equivalent to B31. A detailed description of this category can be found in [Gar23].

This category admits 88 objects, 660 atoms, and a total of 2603 simple morphisms (ex-
cluding the identities). The first possible approach used to study the homology of this
category (see [CM14, Section 5.3]) was to construct the Charney-Meier-Whittlesey complex
for this category (as defined in [Bes07, Section 7]). Sadly this complex is too large to be
dealt with without a strong computational power.

We give in Table ?? the size of the Charney-Meier-Whittlesey complex for C31 compared
to the size of the Dehornoy-Lafont complex (note that in this case, the bounds given by
Lemma 2.17 are 1655 and 1845, respectively):

0-cells 1-cells 2-cells 3-cells 4-cells
CMW 88 2603 11065 15300 6750
DL 88 660 1665 1735 642

Table 2. Compared size of the complexes for C31

LetM be one of the B31 modules we are considering. We first extendM to a B31 module,
using the construction of Section 1.3. We then restrict this module to the category C31. In
the case of k[t, t−1], the matrix we obtain may contain coefficients in k[t, t−1]\k[t], as opposed
to the case of a monoid, in which the action gives rise to matrices in k[t]. In theory this is
not a problem since k[t, t−1] is a principal ideal domain. But in practice, it is far simpler
to look for the Smith normal form of a matrix in k[t]. To avoid this issue, we multiply our
matrices by a big enough power of t (which is an invertible element in k[t, t−1]) to obtain
matrices in k[t]. We only then need to divide the elementary divisors we obtain by powers
of t if need be.

3.6. Computational results. We use the notation Zn for Z/nZ. The computations for
the complexes and the differentials were made on the CHEVIE package for GAP3 ([CHE]).
The computations of the Smith normal forms were made using the softwares Macaulay2

([MAC]) and MAGMA ([MAG]).
For each row, we indicate the representative of the isodiscriminantality class of which we

computed the homology.
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The results in Table 3 are not new. The case of complexified real reflection groups is
already known from [Sal94]; the case of complex reflection groups which are not isodiscrim-
inantal to groups in the infinite series is given in [CM14] and [Mar17]. We reproduce their
results here for the convenience of the reader

H0 H1 H2 H3 H4 H5 H6 H7 H8

A2 ∼ G4, G8, G16 Z Z 0
I2(4) ∼ G5, G10, G18 Z Z2 Z
I2(6) ∼ G6, G9, G17 Z Z2 Z

G7, G11, G19 Z Z3 Z2

G12 Z Z 0
G13 Z Z2 Z

I2(8) ∼ G14 Z Z2 Z
G15 Z Z3 Z2

I2(5) ∼ G20 Z Z 0
I2(10) ∼ G21 Z Z2 Z

G22 Z Z 0
G23 = H3 Z Z Z Z

G24 Z Z Z Z
A3 ∼ G25 Z Z Z2 0
B3 ∼ G26 Z Z2 Z2 Z

G27 Z Z Z3 × Z Z
G28 = F4 Z Z2 Z2 Z2 Z

G29 Z Z Z2 × Z4 Z2 × Z Z
G30 = H4 Z Z Z2 Z Z

G31 Z Z Z6 Z Z
A4 ∼ G32 Z Z Z2 0 Z

G33 Z Z Z6 Z6 Z Z
G34 Z Z Z6 Z6 Z2

3 × Z6 Z2
3 × Z Z

G35 = E6 Z Z Z2 Z2 Z6 Z3 0
G36 = E7 Z Z Z2 Z2

2 Z2
6 Z3 × Z6 Z Z

G37 = E8 Z Z Z2 Z2 Z2 × Z6 Z3 × Z6 Z2 × Z6 Z Z
Table 3. Homology of exceptional braid groups in Z (after Salvetti, Calle-
garo and Marin)
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In the same vein, Table 4 gives the homology of exceptional braid groups with coefficients
in the sign representation. This homology has already been studied in [Sal94] for complexi-
fied real reflection groups and in [Mar17] for the exceptional groups B12, B13, B22, B24, B27,
B29, B33, B34. The first homology groups was studied for all complex reflection group in
[CM14, Section 7.2]. We restate the results of [Sal94, Table 2] and [Mar17, Table 3] among
the results for other exceptional groups (we frame the results which are new).

H0 H1 H2 H3 H4 H5 H6 H7 H8

A2 ∼ G4, G8, G16 Z2 Z3 0
I2(4) ∼ G5, G10, G18 Z2 Z4 0
I2(6) ∼ G6, G9, G17 Z2 Z6 0

G7, G11, G19 Z2 Z2
2 0

G12 Z2 Z3 0
G13 Z2 Z2 0

I2(8) ∼ G14 Z2 Z8 0

G15 Z2 Z2
2 0

I2(5) ∼ G20 Z2 Z5 0
I2(10) ∼ G21 Z2 Z10 0

G22 Z2 0 0
G23 = H3 Z2 0 Z2 0

G24 Z2 0 Z2 0
A3 ∼ G25 Z2 Z3 Z2 0
B3 ∼ G26 Z2 Z2 Z2 0

G27 Z2 0 Z2 0
G28 = F4 Z2 Z2 Z6 Z24 0

G29 Z2 0 Z2 × Z4 Z2 × Z40 0
G30 = H4 Z2 0 Z2 Z120 0

G31 Z2 0 Z6 Z20 0

A4 ∼ G32 Z2 0 Z2 Z5 0
G33 Z2 0 Z2 Z2 Z2 0
G34 Z2 0 Z6 Z2 Z6 Z252 0

G35 = E6 Z2 0 Z2 Z2 Z2 Z9 0
G36 = E7 Z2 0 Z2 Z2

2 Z2
2 Z2 Z2 Z

G37 = E8 Z2 0 Z2 Z2 Z2
2 Z2 Z2

2 Z240 0

Table 4. Homology of exceptional braid groups in Zε (framed results are new).

Lastly, we give in Table 5 the homology with coefficients in the representation k[t, t−1]. In
the case k = Q, this was already studied in [Sal94] for complexified real exceptional reflection
groups; in [CPS01] for real reflection groups of type A; in [Con+99] for real reflection groups
of type B; and in [Mar17] for the exceptional groups B12, B13, B22, B24, B27, B29, B33, B34,
although the results are incomplete for this last group. We let Φn ∈ Z[t] denote the n-th
cyclotomic polynomial. In the Table, for each P ∈ Q[t, t−1], the presence of P in the Table
symbolizes the Q[t, t−1] module Q[t, t−1]/(P ), and Q is a shortcut for Q[t, t−1]/(t− 1).

Note that our apparent results regarding the groups studied in [Mar17] differ from [Mar17,
Table 4] because of a slight mistake in the latter: for all groups except B13, the results
should be “shifted to the left”, for instance Φ6 ⊕ Φ12 is not H2(B12,Q[t, t−1]), but rather
H1(B12,Q[t, t−1]).
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We finish with the case of a finite field k. Following [Mar17], we restrict our attention
to the case k = Fp with p ∈ {2, 3, 5, 7}. We denote by ϕn,k the n-th cyclotomic polynomial
with coefficients in k. As Φn := ϕn,Q lies in Z[X], we can consider its image in Fp[X] for
some prime p. We also denote this polynomial by Φn. It is well known that Φn = ϕn,Fp mod
p if p does not divide n. Furthermore, if p does not divide n, then we have

∀r > 0, Φnpr ≡ (Φn)
pr−pr−1

= (ϕn,Fp)
pr−pr−1

mod p

as stated in [Gue68]. Most of the time, the homology H∗(Bi,Fp[t, t
−1]) is given by the same

polynomials as H∗(Bi,Q[t, t−1]), reduced mod p. For instance we have, in the case of B12:

H1(B12,F2[t, t
−1]) = F2[t, t

−1]/(P )

Where

P (X) = X6 −X5 +X3 −X + 1 = (X2 +X + 1)3 = Φ6(X)Φ12(X) ≡ ϕ3,F2(X)3 mod 2

We list here the cases where H∗(Bi,Fp[t, t
−1]) is not given by the reduction modulo p of the

polynomials giving H∗(Bi,Q[t, t−1]). We first consider the case W ̸= G34. The results for
W ∈ {G24, G29, G33} already appear in [Mar17].

• When W = G29, we have
- H3(B29,F2[t, t

−1]) = (t+ 1)3 ⊕ Φ4.
- H4(B29,F2[t, t

−1]) = (t20 − 1)⊕ Φ4.
• When W = G30, we have H3(B30,F2[t, t

−1]) = (t30 − 1)Φ4Φ12Φ20.
• When W = G31, we have
- H2(B31,F2[t, t

−1]) = Φ1Φ6 and H2(B31,F3[t, t
−1]) = Φ1Φ6.

- H3(B31,F2[t, t
−1]) = (t10 − 1)Φ15 and H3(B31,F3[t, t

−1]) = t−1
t+1(t

10 − 1)Φ15.
• When W = G33, we have
- H2(B33,F2[t, t

−1]) = Φ1 and H2(B33,F3[t, t
−1]) = Φ1.

- H3(B33,F2[t, t
−1]) = Φ1 and H3(B33,F3[t, t

−1]) = Φ1.
• When W = G35, we have H2(B35,F2[t, t

−1]) = Φ1 and H3(B35,F2[t, t
−1]) = Φ1.

• When W = G36, we have
- H2(B36,F2[t, t

−1]) = Φ1.
- H3(B36,F2[t, t

−1]) = Φ1 ⊕ Φ1.
- H4(B36,F2[t, t

−1]) = Φ1 ⊕ (t3 + 1) and H4(B36,F3[t, t
−1]) = t3 − 1.

- H5(B36,F2[t, t
−1]) = t3 + 1, and H5(B36,F3[t, t

−1]) = t3 − 1.
• When W = G37, we have
- H2(B37,F2[t, t

−1]) = Φ1.
- H3(B37,F2[t, t

−1]) = Φ1.
- H4(B37,F2[t, t

−1]) = Φ1Φ4 and H4(B37,F3[t, t
−1]) = Φ1Φ4.

- H5(B37,F2[t, t
−1]) = Φ1 and H5(B37,F3[t, t

−1]) = Φ1 ⊕ Φ1.
- H6(B37,F2[t, t

−1]) = Φ1Φ8Φ12 and H6(B37,F3[t, t
−1]) = Φ1Φ8Φ12.

- H7(B37,F2[t, t
−1]) = (t30−1)(t24−1)

(t6−1)
Φ20.

We notice that, in all of these cases, the homology H∗(Bi,Fp[t, t
−1]) for p ∈ {5, 7} is given

by the reduction modulo p of the polynomials giving H∗(Bi,Q[t, t−1]). This allows us to
give a conjecture about the values of H∗(B34,Q[t, t−1]) which we were not able to compute.

The homology H∗(B34,Fp[t, t
−1]) for p ∈ {2, 3} was computed in [Mar17]. The results are

in Table 6.

G34 H0 H1 H2 H3 H4 H5 H6

F2[t, t
−1] F2 0 (t3 − 1) F2 Φ3 ⊕ Φ3 ⊕ (t3 − 1) (t42 − 1)⊕ Φ3 ⊕ Φ3 0

F3[t, t
−1] F3 0 F3 ⊕ Φ6 F3 Φ3 ⊕ Φ3 ⊕ Φ3 ⊕ Φ2 (t42 − 1)⊕ Φ3 ⊕ Φ3 0

Table 6. Homology of B34 with coefficients in F2[t, t
−1] and F3[t, t

−1] (after Marin).
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We were able to compute the homology H∗(B34,Fp[t, t
−1]) for all primes 5 ⩽ p ⩽ 97. For

each of these cases, we see in Table 7 that the homology is given by the same polynomials:

G34 H0 H1 H2 H3 H4 H5 H6

Fp[t, t
−1] Fp 0 Φ6 0 Φ3 ⊕ Φ3 ⊕ Φ3

(t42−1)
t+1 ⊕ Φ3 ⊕ Φ3 0

Table 7. Homology of B34 with coefficients in Fp[t, t
−1] (for primes p be-

tween 5 and 97).

We obtain a conjecture about H∗(B34,Q[t, t−1]), which we state in Table 8.

G34 H3 H4 H5 H6

Q[t, t−1] 0 Φ3 ⊕ Φ3 ⊕ Φ3
t42−1
t+1 ⊕ Φ3 ⊕ Φ3 0

Table 8. Conjectural homology of B34 with coefficients in Q[t, t−1].
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