Bessis braid category of the complex braid group B_{31} Winter Braids XII, Tours

Owen GARNIER

Université d'Amiens

February 23, 2023

Let *M* be a monoid (for instance $\mathcal{M} = \langle a, b \mid aba = bab \rangle^+$).

We say that $x \in M$ *left-divides* (resp. *right-divides*) $y \in M$ if there is some $z \in M$ such that xz = y (resp. y = zx). We denote this by $x \leq y$ (resp. $y \succeq x$).

In \mathcal{M} , we have $a \leq ab$ and $ab \not\succeq a$. Also $a \leq bab$ as a.ba = aba = bab.

A **Garside monoid** is (roughly speaking) a monoid M satisfying combinatorial assumptions (lcms, gcds, cancellativity...) endowed with a special element Δ such that the sets

$$\{s \in M \mid s \preceq \Delta\}$$
 and $\{s' \in M \mid \Delta \succeq s'\}$

are equal, finite, and generate M. This set is denoted by S.

The monoid \mathcal{M} is Garside for the Garside element $\Delta = aba$. We have $S = \{1, a, b, ab, ba, \Delta\}$. The Hasse diagrams of (S, \preceq) and (S, \succeq) are given by

In general, (S, \preceq) and (S, \succeq) are always lattices.

A **Garside group** is a group G, endowed with a submonoid $M \leq G$, such that M is a Garside monoid which generates G.

Solution to the *word problem*: normal form of elements of G. Solution(s) to the *conjugacy problem*: finite computable subset of every conjugacy class.

For $m \in M$, there is a unique $\phi(m) \in M$ such that $m\Delta = \Delta \phi(m)$.

The map $m \mapsto \phi(m)$ is an automorphism of M, called the **Garside automorphism**. It induces a permutation of the set S, in particular it has finite order

In \mathcal{M} , we have $a\Delta = a(bab) = (aba)b = \Delta b$. In fact ϕ swaps a and b.

The braid group on n strands is defined as the fundamental group of the configuration space

$$E_n := \{(x_i) \in \mathbb{C}^n \mid i \neq j \Rightarrow x_i \neq x_i\} / \mathfrak{S}_n$$
$$= \{x \in \mathbb{C}^n \mid \forall \sigma \in \mathfrak{S}_n, \ \sigma.x \neq x\} / \mathfrak{S}_n$$

Which depends on \mathfrak{S}_n . We can replace \mathfrak{S}_n by

- Finite Coxeter groups: we get spherical Artin groups.
- ② Complex reflection groups: we get *complex braid groups*.

Complex reflection groups are well-understood. In particular the irreducible ones are classified. We get a classification of irreducible complex braid groups with

- An infinite family depending on integer parameters...
- 2 A sequence of 34 exceptional cases B_4, \ldots, B_{37} .

Consider the list of exceptional irreducible complex braid groups.

B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}
B_{13}	B_{14}	B_{15}	B_{16}	B_{17}	B_{18}	B_{19}	B_{20}	B_{21}
B ₂₂	B ₂₃	B ₂₄	B_{25}	B_{26}	B ₂₇	B_{28}	B_{29}	B ₃₀
B_{31}	B_{32}	B ₃₃	B_{34}	B_{35}	B_{36}	B ₃₇		

First, some of these are braid groups of real reflection groups (spherical Coxeter groups). Such groups admits a canonical Garside structure (Dehornoy, Paris).

B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}
B_{13}	B_{14}	B_{15}	B_{16}	B_{17}	B_{18}	B_{19}	B_{20}	B_{21}
B ₂₂	B23	B ₂₄	B_{25}	B_{26}	B ₂₇	B28	B_{29}	B30
B_{31}	B_{32}	B ₃₃	B ₃₄	B35	B36	B37		

Then, a lot of irreducible reflection group have the same braid group as some real reflection group (Shephard groups). In particular they inherit the Garside structure of their real counterpart.

₿⁄4	₿s	₿6	B_7	<i>B</i> ∕8	₿ģ	B_{10}	B_{11}	B_{12}
B ₁₃	B_{14}	B_{15}	B ₁₆	B_{17}	B ₁₈	B_{19}	B20	B_{21}
B ₂₂		B_{24}	B25	B26	B ₂₇		B_{29}	
B ₃₁	B32	B ₃₃	B ₃₄					

Remaining groups of rank two admit *ad hoc* Garside structures (Picantin).

The groups B_{24} , B_{27} , B_{29} , B_{33} and B_{34} all admit a Garside structure: the *dual braid monoid* (Bessis).

11 / 20

Exceptional braid groups are Garside groups... except B_{31}

 B_{31}

Theorem (Bessis 15)

The braid group B_{37} admits a Garside monoid M with 120 generators $s_1, \ldots s_{120}$ and Garside element $\Delta = s_1 \cdots s_8$ (dual braid monoid).

Theorem (Bessis 15)

There is some element $\rho \in B_{37}$ such that $C_{B_{37}}(\rho) \simeq B_{31}$ and $\rho^2 = \Delta^{15}$.

This is wonderful ! It gives rise to a *Garside category* C_{31} , and a *Garside groupoid* B_{31} suitable for studying B_{31} !

"One can write down a presentation by generators and relations for \mathcal{B}_{31} , and deduce a presentation an relations for the braid group \mathcal{B}_{31} ."

D. Bessis

13 / 20

The defining presentation of the category \mathcal{C}_{31} is given by

$$\begin{aligned} \operatorname{Ob}(\mathcal{C}_{31}) &:= \left\{ u \in \mathcal{M}(B_{37}) \mid u\phi^8(u) = \Delta \right\}. \\ \mathcal{S} &:= \left\{ (a, b) \in \mathcal{M}(B_{37}) \mid ab \in \operatorname{Ob}(\mathcal{C}_{31}) \right\}. \\ \operatorname{Rel} &:= \left\{ (x, y, z) \in \mathcal{M}(B_{37}) \mid xyz \in \operatorname{Ob}(\mathcal{C}_{31}) \right\}. \end{aligned}$$

With $(a, b) : ab \to b\phi^8(a)$. An element $(x, y, z) \in \text{Rel}$ expresses the relation

$$(x, yz)(y, z\phi^8(x)) = (xy, z).$$

We get 88 objects, 2603 nontrivial generating morphisms, and 11065 relations.

Theorem (My computer, 2022)

For every $u \in Ob(\mathcal{C}_{31})$, the group $\mathcal{B}_{31}(u, u)$ is generated by a set of *atomic loops*, which are positive elements of minimal length in $\mathcal{C}_{31}(u, u)$. Atomic loops corresponds to braid reflections in B_{31} .

Theorem (G. 22)

Let λ be an atomic loop in $\mathcal{B}_{31}(u, u)$. If $f \in \mathcal{B}_{31}(u, u)$ is such that $f^{-1}\lambda^n f$ is positive, then $f^{-1}\lambda f = \lambda'$ for some atomic loop λ' in $\mathcal{B}_{31}(u, u)$.

Corollary (G. 22)

Let $P \subset B_{31}$ be a finite index subgroup. We have $Z(P) \subset Z(B_{31})$, in particular it is cyclic.

Let $f \in Z(P) \subset \mathcal{B}_{31}(u, u)$. We have to show that f commutes with atomic loops.

Let λ be an atomic loop in $\mathcal{B}_{31}(u, u)$. There is some $n \ge 1$ such that $\lambda^n \in P$.

We have $f^{-1}\lambda^n f = \lambda^n$ by assumption. By our theorem there is some atomic loop λ' with $f^{-1}\lambda f = \lambda'$ and $\lambda'^n = \lambda^n$.

This implies $\lambda = \lambda'$ (word problem solution). Thus *f* commutes with all atomic loops.

 C_{31} is defined by a categorical presentation. Is it possible to deduce a presentation of $B_{31} = B_{31}(u, u)$ for some u? Answer : YES !

Let \mathcal{G} is a finitely presented groupoid, and let $u \in Ob(\mathcal{G})$. We can deduce a presentation of $\mathcal{G}(u, u)$ from the presentation of \mathcal{G} using an analogue of the Reidemeister-Schreier method.

Using this method (and a computer !), we deduce, for different objects of C_{31} , different presentations of B_{31} , with atomic loops (braid reflections) as generators !

For instance, B_{31} can be generated by 6 elements t, g, n, s, p, m, with relations as follows

$$\begin{cases} tg = nt = gn, \\ ts = st, \ pn = np, \ gm = mg, \\ psm = smp = mps, \\ tpt = ptp, \ tmt = mtm, \ pgp = gpg, \\ sns = nsn, \ sgs = gsg, \ nmn = mnm. \end{cases}$$

This is a bit redundant as tg = nt implies $tgt^{-1} = n$. We can delete a generator.

The rabbit monoid

¢

Lastly, there is one object for which we recover the "classical" presentation of B_{31} : five generators s, t, u, v, w and relations

$$\begin{cases} ts = st, vt = tv, wv = vw, \\ suw = uws = wsu, \\ svs = vsv, vuv = uvu, utu = tut, twt = wtw. \end{cases}$$

Summarized in the following diagram:

Thank you for your attention