Regular theory in complex braid groups Seminario de Àlgebra, Universidad de Sevilla

Owen GARNIER

LAMFA

November 8, 2022

Let V be a complex vector space of dimension $n < \infty$.

An element $r \in GL(V)$ is a *reflection* if Ker (r-1) is a hyperplane of V and if r has finite order.

We call $H_r := \text{Ker} (r - 1)$ the *reflecting hyperplane* of *r*.

A subgroup $W \leq GL(V)$ is a *complex reflection group* if it is generated by reflections.

- $\rightarrow W = \mu_n \leqslant \operatorname{GL}_1(\mathbb{C})$
- → $W = \mathfrak{S}_n \leq \operatorname{GL}_n(\mathbb{C})$ as the permutation matrices (with reflections as transpositions)

We denote by A the set of reflecting hyperplanes of (reflections of) W.

Irreductibility

A CRG $W \leq GL(V)$ is *irreducible* if the representation $W \hookrightarrow GL(V)$ is irreducible (i.e the only W-stable subspaces of V are $\{0\}$ and V).

Every CRG decomposes as a product of irreducible reflection group. For $W = \mathfrak{S}_n$, the line $D = \mathbb{C}(1, \ldots, 1)$ is *W*-invariant. So *W* is not irreducible, but $W' = \mathfrak{S}_n$ acting on

$$H:=\left\{(x_1,\ldots,x_n)\mid \sum x_i=0\right\}=D^{\perp}$$

is irreducible

Theorem (Shephard, Todd 54)

Every irreducible CRG is isomorphic to either

- A member of an *infinite series* G(de, e, n) (d, e, n ∈ N) of groups of monomial matrices. It contains Coxeter groups of type A, B, D and I₂.
- An *exceptional group* G₄,..., G₃₇. It contains exceptional spherical Coxeter groups.

Steinberg

Let $X = V \setminus \bigcup A$ be the complement in X of the reunion of the reflecting hyperplanes. It is path-connected. We say that a vector $v \in X$ is *regular*. For \mathfrak{S}_n , the reflecting hyperplane for the transposition $(i \ j)$ is given by $x_i = x_j$. So in this case

$$X := \{(x_1, \cdots, x_n) \in \mathbb{C}^n \mid \forall i \neq j, x_i \neq x_j\}$$

Theorem (Steinberg)

The action of W on X is free.

In particular $w \in W$ is trivial if and only if there is some $x \in X$ such that w.x = x.

As W is discrete (finite), this has nice consequences on the topology of X and X/W.

From now on, k > 1 is an integer. We denote $\zeta_k := \exp\left(\frac{2i\pi}{k}\right) \in \mu_k^* \subset \mu_k$

Definition

An element $g \in W$ is called ζ -**regular** if it admits a ζ -eigenvector which is a regular vector. We say *k*-regular instead of ζ_k -regular.

If g is ζ -regular with $\zeta \in \mu_d^*$, then g is of order d (Steinberg). We denote $V(g, \zeta)$ the ζ -eigenspace of g. By construction, the centralizer $C_W(g)$ acts on $V(g, \zeta)$. We have

Theorem (Springer 74)

The group $C_W(g)$ acts on $V(g,\zeta)$ as a complex reflection group. Furthermore all ζ_k elements (should they exist) are conjugate.

Existence of regular elements

To a CRG of rank n one can associate two sequences of integers

$$d_1, \cdots, d_n$$
 and d_n^*, \cdots, d_1^*

That we call the *degrees* and the *codegrees* of W. For k > 0, define

 $A(k) := \{d_i \mid k \text{ divides } d_i\} \text{ and } B(k) := \{d_i^* \mid k \text{ divides } d_i^*\}$

Also, a(k) and b(k) their respective cardinalities.

Theorem (Springer 74, Broué 88, Lehrer-Michel 03)

We have that ζ_k -regular elements exist if and only if a(k) = b(k). If so, the degrees (resp. codegrees) of the associated centralizer are the elements of A(k) (resp. B(k)).

The degrees (resp. codegrees) of G_{30} are 2, 12, 20, 30 (resp. 0, 10, 18, 28). For k = 4, we have A(4) = 12, 20 and B(4) = 0, 28. So 4 is regular and the centralizer of a 4-regular element in G_{30} is isomorphic to G_{22} .

Braid group and pure braid group

Let $x \in X$ be a basepoint in X. The orbit W.x will be the basepoint in the orbit space X/W.

The **pure braid group** is the fundamental group $P(W) := \pi_1(X, x)$. The **braid group** is the fundamental group $B(W) := \pi_1(X/W, W.x)$.

Since the action of W on X is free, we get a covering $X \to X/W$. An element $b \in B(W)$ lifts to a unique (up to homotopy) path $\tilde{b}: x \rightsquigarrow w.x$ for some $w \in W$.

The map $b \mapsto w$ induces a group morphism $B(W) \rightarrow W$, and we have a short exact sequence

$$1 \rightarrow P(W) \rightarrow B(W) \rightarrow W \rightarrow 1$$

For $b \in B(W)$, we have $b \in P(W)$ if and only if b lifts to a loop from x to itself in X.

Centers of irreducible braid groups

From now on, W is assumed to be irreducible.

Let
$$m := |Z(W)|$$
, we have $Z(W) = \{\zeta \operatorname{Id} \mid \zeta \in \mu_m\}$.

Let $z_W = \zeta_m Id$ be a generator of the center. Consider the path

$$\widetilde{z_W}: t \mapsto e^{\frac{2i\pi t}{m}}x$$

from x to $z_W.x$ in X. It induces an element z_B in B(W), sent to z_W by the projection $B(W) \rightarrow W$.

The element z_B^m is represented by the loop

$$z_P: t \mapsto e^{2i\pi t}x$$

which lies inside P(W). The element z_P is called the **full-twist**.

Theorem

The elements z_P, z_B, z_W generate the centers of P(W), B(W), W.

Owen Garnier (UPJV)

Let g be a k-regular element, $V_g := V(g, \zeta_k)$, $G := C_W(g)$. Denote by X_g the space of regular vectors in V_g .

Proposition

The map $G.x \mapsto W.x$ induces a homeomorphism $X_g/G \simeq (X/W)^{\mu_k}$

From this we get a morphism

We want to understand the kernel and image of this morphism.

We have a path in X_g

$$\gamma: t \mapsto e^{\frac{2i\pi t}{k}}y$$

Which goes from y to g.y.

- It induces a (central) element in $B(G) := \pi_1(X_g/G, G.y)$, which is sent to some $\tilde{g} \in B(W)$ by ι .
- The element \tilde{g} is a k-th root of z_P in B(W).
- The element g̃ is sent to some conjugate of g in W.
- The morphism ι has image inside $C_{B(W)}(\tilde{g})$.

From this we deduce the definition:

We call a k-regular braid a k-root of z_P in B(W).

A CRG W is said to be **well-generated** if it can be generated by n reflections. Otherwise, we say that W if **badly-generated** (and it can be generated by n + 1 reflections).

Theorem (Bessis 15)

Let W be an irreducible well-generated complex reflection group.

- There exists k-regular braids in B(W) if and only if k is regular for W.
- The k-regular braids form a conjugacy class of B(W). They are mapped to ζ_k-regular elements in W.
- If ρ a k-th root of z_P , and w is its image in W. Then $C_{B(W)}(\rho) \simeq B(W')$ where $W' := C_W(w)$.

This theorem leaves the following groups:

Infinite familyG(de, e, n) with $d \ge 2$ and $e \ge 2$ Exceptional groups G_7 , G_{11} , G_{12} , G_{13} , G_{15} , G_{19} , G_{22} and G_{31} .

- B(G(de, e, n)) is a normal subgroup of B(G(de, 1, n)) of index e. And B(G(de, 1, n)) is well generated.
- $B(G_{22})$ and $B(G_{31})$ are centralizers of regular braids inside well-generated groups.
- $B(G_7), B(G_{11}), B(G_{15})$ and $B(G_{19})$ are isograd with groups of the infinite series.
- $B(G_{12})$ and $B(G_{13})$ admits Garside structures, which allows for direct computations.

Periodic elements ?

The above theorem only covers the lifts of ζ_k -regular elements, what about others regular elements ?

Lemma

In W, if g is ζ -regular, then g^d is ζ^d -regular. "Conversely", if g is a regular element of order k, then g is a power of some k-regular element.

To mimic this, we consider powers of k-regular braids in B(W). Such a braid respect an equation of the form

$$\rho^{p} = z_{P}^{q}$$

for some integers (p, q). In particular (as z_P^q is central) those elements admit a central power.

Definition

An element in B(W) which admits a central power is called a *periodic element*

Owen Garnier (UPJV)

Consider the set R of regular numbers for W. It is finite, so we can consider the subset R_{max} of regular numbers which are maximal for divisibility.

A k-regular braid for $k \in R_{max}$ is called **maximal**.

Proposition (G.22)

Every k-regular braid is a power of some maximal regular braid. Every periodic element in B(W) is a power of some maximal regular braid. In particular the image of periodic elements of B(W) in W are regular elements.

Corollary (G.22)

Let $b \in B(W)$, then b is periodic if and only if some element b^k is central for a $k \in R_{max}$

This is an analogue of the case of the classical braid group (where $R_{max} = \{n - 1, n\}$).

Corollary

If $z \in Z(B(W))$, then roots of z are unique in B(W) up to conjugacy.

This is a bit more general than uniqueness of roots of z_P . The problem of uniqueness of roots up to conjugacy remains an open problem in general.

Every element of R_{max} is divisible by |Z(W)|. One can then define $R_{mod} := \frac{1}{|Z(W)|} R_{max}$

Proposition (Shvartsman 96, G.22)

Let W be any irreducible complex reflection group. If γ is an element of torsion in B(W)/Z(B(W)), then the order of γ divides an element of R_{mod} . Conversely, every divisor of an element of R_{mod} is the order of some element of B(W)/Z(B(W)).

Thank you for your attention