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Definition
A monoid is a set M, endowed with a composition law that is
associative and admits a unit (that we denote 1 ∈ M).

A group is a special kind of monoid (where every element admits
an inverse)
If (A, +, ×) is a unitary ring, then (A, ×) endowed with its product
law is a monoid.
Given a set E , on can build the free monoid on E, its elements are
formal words in the elements of E .
This allows the definition of monoid presentation.

Example
N2 = ⟨a, b | ab = ba⟩ (with a = (0, 1) and b(1, 0))
M = ⟨a, b | bab = aba⟩
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Cancellativity

Definition
We say that a monoid M is cancellative if we have

• ∀a, b, c ∈ M, ac = bc ⇒ a = b (right-cancellative)
• ∀a, b, c ∈ M, ca = cb ⇒ a = b (left cancellative)

A group (or more generally a submonoid of a group) is obviously
cancellative, the product on a ring never is (take c = 0 for
instance).

Remark
In a categorical context, this reminds of the definition of
monomorphism/epimorphism.
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Divisibility orders, lcms and gcds

Definition
• a ⪯ c if ∃b ∈ M | ab = c. (left divisibility)
• c ⪰ a if ∃b ∈ M | c = ba. (right divisibility)

In a group, everything divides everything else (on each side).
In a ring monoid (A, ×), we recover the “usual” notion of
divisibility.
In (N, +), we have n ⪯ m if and only if n ⩽ m (in the usual order).
These relations are reflexive and transitive, but they need not be
antisymetric : for x ∈ M×, x ≺ 1 ≺ x .
From now on, we always assume that our monoid are cancellative
and M× = {1}, then ⪯ and ⪰ become preorders.
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Let a, b ∈ M, what are maximums/minimums for a, b and ⪯, ⪰ ?

Definition
Let c ∈ M, we say that

• c is a left lcm of a, b if a, b ⪯ c, and a, b ⪯ d ⇒ c ⪯ d .
We write c = a ∨L b.

• c is a left gcd of a, b if c ⪯ a, b, and d ⪯ a, b ⇒ d ⪯ c.
We write c = a ∧L b.

• c is a right lcm of a, b if c ⪰ a, b, and d ⪰ a, b ⇒ d ⪰ c.
We write c = a ∨R b.

• c is a right gcd of a, b if a, b ⪰ c, and a, b ⪰ d ⇒ c ⪰ d .
We write c = a ∧R b.

Since we assume M× = 1, lcms and gcds, if they exists, are unique.
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Definition
We call atoms elements of M that are minimal for ⪯ and ⪰.
In practice, a is an atom if a = bc means that b ∈ M× or c ∈ M×.

Lastly, we need the definition of a homogeneous monoid.
Definition
We say that M is homogeneous if there is some length function
(monoid morphism) from M to (N, +), such that M is generated
by elements of length > 0.

A homogenous monoid always satisfy M× = 1.
In a homogeneous monoid, every element is a product of a finite
number of atoms.
Remark
If a presented monoid admits only relations between words of same
length is homogeneous. This is the case of M = ⟨a, b | aba = bab⟩.
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Definition of Garside monoids

We say that x ∈ M is balanced if the sets of its left-divisors and
right-divisors are the same.

Definition
Let M be a homogeneous cancellative monoid. Let ∆ ∈ M, we say
that (M, ∆) is a Garside monoid if ∆ is balanced, and
S := Div(∆) is finite and generates M.
We also require (S, ⪰) and (S, ⪯) to be lattices.
We call S the set of simples of (M, ∆).

By definition, every atom must be a simple.
It is equivalent to ask that two simples admit lcms and gcds, and
to ask that every pair of elements does.

Owen Garnier UPJV
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Examples

• (N∗, ×) is not Garside, its atoms are the prime numbers : they
are infinite.

• The monoid M = ⟨a, b | aba = bab⟩ is Garside with Garside
element ∆ = aba, we have S = {1, a, b, ab, ba, aba}.

• (N, +) is Garside, with ∆ = 1, and S = {0, 1}.
• (Nk , +) is Garside, with ∆ = (1, · · · , 1) and S is made of

tuples containings only 0 and 1.
• If (M, ∆) is Garside, then (M, ∆k) for k ∈ N∗ is again Garside

: there is a choice to make in the Garside structure !

Owen Garnier UPJV
Garside monoid for the Artin group associated to finite Coxeter group
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The Greedy normal form
Let m ∈ M \ {1}, there is some atom a such that a ⪯ m,

so the set

{s ∈ S | s ⪯ m}

is finite and nonempty : it admits a right lcm H(m) such that
H(m) ⪯ m. We set T (m) to be such that H(m)T (m) = m.
Again, if T (m) ̸= 1, then we consider H(T (m))....
In the end we have

m = s1. · · · .sr

with si = α(T i−1(m)), this is the greedy normal form of m.

Remark
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Consequence on the Garside group

To a monoid M one can associate an “envelopping group” G(M).

But it needs not behave well : we don’t have M ↪→ G(M).

Proposition
If (M, ∆) is Garside, then every element of G(M) admits a unique
expression of the form

g = ∆ks1 · · · sr

where k ∈ Z and s1 · · · sr is a greedy normal form in M.

This gives a solution to the word problem in Garside groups !
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Computation of a greedy normal form

M = ⟨a, b | aba = bab = ∆⟩,

aabbababaab = a.ab.ba.bab.a.ab
= a.ab.bab.ab.a.ab
= a.ab.aba.ab.a.ab
= a.aba.ba.ab.a.ab
= aba.b.ba.ab.a.ab
= aba.b.ba.aba.ab
= ∆2.a.ab.ab
= ∆2.a.aba.b
= ∆3.b.b
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Garside Automorphism

Proposition
Let s ∈ S, there is a unique sϕ ∈ S such that s∆ = ∆sϕ.

If s ⪯ ∆, then there is some s such that ss = ∆.
Then ∆ ⪰ s and s ⪯ ∆, so there is some sϕ such that ssϕ = ∆.
We have s∆ = sssϕ = ∆sϕ.
Corollary
The mapping s 7→ sϕ extends to an automorphism of M, which has
finite order, so ∆ admits a central power.
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Coxeter systems

Definition
Let S be a finite set, we define a Coxeter group by the
presentation

W := ⟨S | ∀s, t ∈ S, (st)ms,t = 1⟩

With ms,t ∈ N ∪ {∞}, ms,t = mt,s ⩾ 2 if t ̸= s and ms,s = 1.

So the set ms,s = mt,t = 1 and ms,t = 2 gives the group

W = ⟨s, t | s2 = t2 = (st)2 = 1⟩ = Z/2Z × Z/2Z

We denote p(s, t, n) the product stst... with n terms.
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Coxeter Systems

For s = t, we get s2 = 1, so s = s−1 (quadratic relations).

The relation (st)ms,t = 1 is then equivalent to

p(s, t, ms,t) = p(t, s, ms,t)

which will be called the braid relation between s and t.
If ms,t = 2, we get st = ts.
If ms,t = 3, we get sts = tst.
If ms,t = ∞, then there is no braid relation between s and t.

The Coxeter group associated to M = (ms,t) is also presented by

W :=
〈
S | ∀s, t ∈ S, s2 = 1, p(s, t, ms,t) = p(t, s, ms,t)

〉
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Classical examples : symetric and dihedral groups

Proposition
Let n ∈ N∗, we denote si = (i i + 1) for i ∈ [[1, n − 1]]. The group
Sn is a Coxeter group for S = {si}i∈[[1,n−1]] with the presentation

〈
s1, · · · , sn−1

∣∣∣∣∣∣∣
sisj = sjsi for |i − j | ⩾ 2
sisi+1si = si+1sisi+1 for i ∈ [[1, n − 1]]
s2
i = 1 for i ∈ [[1, n − 1]]

〉

For instance, S4 is presented by

⟨s, t, u | sts = tst, tut = utu, su = us, s2 = t2 = u2 = 1⟩

Owen Garnier UPJV
Garside monoid for the Artin group associated to finite Coxeter group



Reminders on Monoids Garside monoids Introduction to Coxeter systems Classical Artin monoid

Classical examples : symetric and dihedral groups

Proposition
Let n ∈ N∗, we denote si = (i i + 1) for i ∈ [[1, n − 1]]. The group
Sn is a Coxeter group for S = {si}i∈[[1,n−1]] with the presentation

〈
s1, · · · , sn−1

∣∣∣∣∣∣∣
sisj = sjsi for |i − j | ⩾ 2
sisi+1si = si+1sisi+1 for i ∈ [[1, n − 1]]
s2
i = 1 for i ∈ [[1, n − 1]]

〉

For instance, S4 is presented by

⟨s, t, u | sts = tst, tut = utu, su = us, s2 = t2 = u2 = 1⟩

Owen Garnier UPJV
Garside monoid for the Artin group associated to finite Coxeter group



Reminders on Monoids Garside monoids Introduction to Coxeter systems Classical Artin monoid

Classical examples : symetric and dihedral groups

Proposition
The group Dn of order 2n is a Coxeter group for S = {si}i∈[[1,n−1]]
with the presentation〈

s, t
∣∣∣∣∣ p(s, t, n) = p(t, s, n)

s2 = t2 = 1

〉

For instance, D3 is presented by

⟨s, t | sts = tst, s2 = t2 = 1⟩

it is in particular isomorphic to S3.
Exercice : show that a subgroup of a Coxeter group generated by
two elements of S is always a dihedral group.
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Length function

Definition
An element w ∈ W can always be expressed as a word
w = s1 · · · sk with si ∈ S. We call ℓS(w) the minimal k for which
this is possible, we say that ℓS(w) is the length of w , and any
expression for w of minimal length is called reduced

Proposition
1 ℓS(w) = 1 if and only if w ∈ S.
2 ℓS(ww ′) ⩽ ℓS(w) + ℓS(w ′) for w , w ′ ∈ W .
3 ℓS(ws) = ℓS(w) ± 1 for s ∈ S.
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Main theorems on reduced expressions

Exchange condition
Let s1 · · · sk = w be a reduced expression, and s ∈ S be such that
ℓS(sw) < ℓS(w), then there is some i ∈ [[1, k]] such that
sw = s1 · · · ŝi · · · sk .

Theorem
Let w ∈ W and s ∈ S, we have ℓS(sw) < ℓS(w) (resp.
ℓS(ws) < ℓS(w)) if and only if there is some reduced expression of
w starting (resp. ending) by s.

Matsumoto’s lemma
Two reduced expression of the same element in W are related by
only braid relations (no quadratic relations needed).
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Longest element

From now on, W is assumed to be finite.
There is an element of maximal length in W , denoted by w0. This
element is unique and defined by ℓS(sw0) < ℓS(w0) for all s ∈ S.

Proposition
Let w ∈ W , w a reduced expression of w , there exists a reduced
expression of w0 which starts by w .

By descending induction on ℓS(w).
If ℓS(w) = ℓS(w0), we have w = w0 by uniqueness of w0.
Now for w ∈ W , since ℓS(w) is not maximal, there is some s ∈ S
such that ℓS(ws) > ℓS(w), so w .s is a subword of some reduced
expression of w0.
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Artin groups

For all Coxeter system (W , S), one can consider the Artin group
associated to (W , S), defined by the presentation

A(W ) := ⟨S | p(s, t, ms,t) = p(t, s, ms,t)⟩

(Same presentation as for W , but without quadratic relations).
This group is infinite, without torsion, but its defining presentation
also defines a monoid, that we denote M(W ) from now on.

Examples
A(S3) = ⟨s, t | sts = tst⟩ A(D4) = ⟨s, t | stst = tsts⟩.

By definition, we have a morphism π : M(W ) → W sending s to s.
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We will see the elements of M(W ) as words ’up to braid relations’.
This helps to explain the relations ⪯ and ⪰ in M(W ) :

m ⪯ m′ if and only if there is a word for m′ that starts with m.
m′ ⪰ m if and only if there is a word for m′ that ends with m.

Since the relations defining M(W ) are homogeneous, we can define
a length function ℓ on M(W ) (which gives the length of a word).
We have ℓS(π(m)) ⩽ ℓ(m)

Theorem
Let (W , S) be a Coxeter system with W finite.
Then the Artin monoid M(W ) is a Garside monoid, where ∆ is a
reduced word for w0, and the simples are in bijection with W .

We ommit the proof that M(W ) is cancellative.

Owen Garnier UPJV
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Lift of M(W ) ↠ W

Let w ∈ W have a reduced expression w .

The word w defines an
element of M(W ), that we denode w, that depends only on w
(Matsumoto).
We get an application W → M(W ) such that π(w) = w .

Lemma
We have ℓ(m) = ℓS(π(m)) ⇔ m = w (with w = π(m)).

Corollary
For x , y , z ∈ W , we have

xy = z ⇔ xy = z and ℓS(x) + ℓS(y) = ℓS(z)

Owen Garnier UPJV
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Simple elements

Proposition
The element ∆ = w0 is balanced, and its divisors are the w for
w ∈ W .

Let m, m′ ∈ M(W ) be such that mm′ = w0, we have
ℓ(m) + ℓ(m′) = ℓ(w0).
But since π(m)π(m′) = w0, ℓS(w0) ⩽ ℓS(π(m)) + ℓS(π(m′))
This proves ℓS(π(m)) = ℓ(m), and m = w for some w ∈ W .
The converse has already been proven.
Thanks to the last corollary, we have a complete description of
(S, ⪯) and (S, ⪰).
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Existence of gcds

Let w1, w2 in W , w the longest word dividing both w1 and w2,
and z1, z2 such that wzi = wi.

If s is an atom with s ⪯ wi, if s ̸⪯ m, then s ≺ zi because of the
exchange condition.
So there is an expression of zi starting by s, but ws is a common
left-subword of w1, w2, longer than w.
If d ⪯ wi, write d = sd′, and proceed by induction.
The same reasoning on the right concludes the proof of :

Proposition
Elements of S admits left and right gcds.
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Existence of lcm

Let w1, w2 in W , we have w1, w2 ⪯ ∆,

so the set

X := {w ∈ S | w1, w2 ⪯ w}

is finite and non-empty : it admits m a left gcd. Since wi ⪯ w for
all w ∈ X , we have w ⪯ m and m is a common right multiple of
w1, w2.
By definition, every common multiple of w1, w2 admits m as a left
divisor : this is the definition of a right-lcm.

Proposition
Elements of S admits left and right lcms.
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Garside automorphism in Sn

In order to understand the automorphism ϕ, we only need to
describe its values on the atoms :

In M(S3), we have

a∆ = abab = babb = ∆b

so aϕ = b, we also have bϕ = a : ϕ has order 2.

Proposition

In M(Sn), we have sϕ
i = sn−i

One can even show that Z (A(Sn)) is in fact generated by ∆2.
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Garside automorphism in Dn

In the dihedral group Dn, we have ∆ = p(s, t, n) = p(t, s, n)

If n is even, we have

s∆ = sp(t, s, n) = p(s, t, n + 1) = p(s, t, n)s = ∆s

so sϕ = s and tϕ = t : ∆ is already central (geometrically, we
recover −Id ∈ Dn.
If n is odd, we have

s∆ = sp(t, s, n) = p(s, t, n + 1) = p(s, t, n)t = ∆t

so sϕ = t and tϕ = s : ∆2 is central
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An extension ?

We restricted this study to the case of finite Coxeter groups, we
needed the longest element w0.

But we can construct elements w ∈ A(W ) for any Coxeter group.
And they all still have lattice properties (gcds and lcms).
But without a ∆ there is no Garside.

Or is there ?

Yes there is, in a weaker sense : there is an infinite Garside family
for the monoid M(W ).
But this has a cost : we don’t know if M(W ) embeds in A(W ).
So the knowledge of M(W ) is not that useful to understand A(W ).
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Thank you for your attention

Owen Garnier UPJV
Garside monoid for the Artin group associated to finite Coxeter group


	Reminders on Monoids
	Garside monoids
	Introduction to Coxeter systems
	Classical Artin monoid

