Projective complex braid groups Algebra and topology seminar, ANU

Owen Garnier

Departamento de Álgebra e Instituto de Matemáticas Universidad de Sevilla

September 23rd, 2025

V: complex vector space of dimension $n < \infty$.

V: complex vector space of dimension $n < \infty$.

Reflection: $s \in GL(V)$ with finite order and codim Ker(s-1) = 1.

V: complex vector space of dimension $n < \infty$.

Reflection: $s \in GL(V)$ with finite order and codim Ker(s-1) = 1.

Definition

A finite group $W \leq GL(V)$ is a **complex reflection group** (CRG) if it is generated by reflections.

V: complex vector space of dimension $n < \infty$.

Reflection: $s \in GL(V)$ with finite order and codim Ker(s-1) = 1.

Definition

A finite group $W \leq GL(V)$ is a **complex reflection group** (CRG) if it is generated by reflections.

If V is a real vector space, then W is a Coxeter group.

V: complex vector space of dimension $n < \infty$.

Reflection: $s \in GL(V)$ with finite order and codim Ker(s-1) = 1.

Definition

A finite group $W \leq GL(V)$ is a **complex reflection group** (CRG) if it is generated by reflections.

If V is a real vector space, then W is a Coxeter group.

W irreducible: $W \hookrightarrow GL(V)$ is an irreducible representation.

Any CRG decomposes as a product of irreducible CRGs.

V: complex vector space of dimension $n < \infty$.

Reflection: $s \in GL(V)$ with finite order and codim Ker(s-1) = 1.

Definition

A finite group $W \leq GL(V)$ is a **complex reflection group** (CRG) if it is generated by reflections.

If V is a real vector space, then W is a Coxeter group.

W irreducible: $W \hookrightarrow GL(V)$ is an irreducible representation.

Any CRG decomposes as a product of irreducible CRGs.

The set of **regular vectors** is $X := \{v \in V \mid \mathsf{Stab}_W(v) = 1\}.$

• For $d\geqslant 1$, $\mu_d\leqslant \operatorname{GL}_1(\mathbb{C})$ is a CRG with $X=\mathbb{C}^*$.

- For $d \geqslant 1$, $\mu_d \leqslant \operatorname{GL}_1(\mathbb{C})$ is a CRG with $X = \mathbb{C}^*$.
- The group

$$G_4 = \left\langle \begin{pmatrix} j & 0 \\ -j^2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & j^2 \\ 0 & j \end{pmatrix} \right\rangle$$

is an irreducible CRG of order 24 with

$$X = \{(x, y) \in (\mathbb{C}^*)^2 \mid y \notin \{j^2 x, -j x\}\}\}.$$

- For $d \geqslant 1$, $\mu_d \leqslant \operatorname{GL}_1(\mathbb{C})$ is a CRG with $X = \mathbb{C}^*$.
- The group

$$G_4 = \left\langle \begin{pmatrix} j & 0 \\ -j^2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & j^2 \\ 0 & j \end{pmatrix} \right\rangle$$

is an irreducible CRG of order 24 with

$$X = \{(x, y) \in (\mathbb{C}^*)^2 \mid y \notin \{j^2 x, -j x\}\}\}.$$

• For $m \geqslant 1$ an integer, $G(m,1,n) \leqslant \operatorname{GL}_n(\mathbb{C})$ is the group monomial matrices with nonzero entries in μ_m . It is a CRG with

$$X = \{x \in (\mathbb{C}^*)^n \mid x_i \notin \mu_m x_j\}$$

- For $d \geqslant 1$, $\mu_d \leqslant \operatorname{GL}_1(\mathbb{C})$ is a CRG with $X = \mathbb{C}^*$.
- The group

$$G_4 = \left\langle \begin{pmatrix} j & 0 \\ -j^2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & j^2 \\ 0 & j \end{pmatrix} \right\rangle$$

is an irreducible CRG of order 24 with

$$X = \{(x, y) \in (\mathbb{C}^*)^2 \mid y \notin \{j^2x, -jx\}\}\}.$$

• For $m \geqslant 1$ an integer, $G(m,1,n) \leqslant \operatorname{GL}_n(\mathbb{C})$ is the group monomial matrices with nonzero entries in μ_m . It is a CRG with

$$X = \{x \in (\mathbb{C}^*)^n \mid x_i \notin \mu_m x_j\}$$

• For p|m, $G(m, p, n) \leq G(m, 1, n)$ is the subgroup of matrices whose product of nonzero entries lies in $\mu_{m/p}$. It is a CRG.

d: positive integer.

 $V(g,\zeta)$: ζ -eigenspace of $g \in GL(V)$.

d: positive integer.

 $V(g,\zeta)$: ζ -eigenspace of $g \in GL(V)$.

Definition (Springer '74)

 $g \in W$ is d-regular if $V(g, \zeta_d) \cap X \neq \emptyset$, where $\zeta_d := \exp(\frac{2i\pi}{d})$.

 $d \in \mathbb{N}_{\geqslant 1}$ is **regular** if W contains d-regular elements.

d: positive integer.

 $V(g,\zeta)$: ζ -eigenspace of $g \in GL(V)$.

Definition (Springer '74)

 $g \in W$ is d-regular if $V(g, \zeta_d) \cap X \neq \emptyset$, where $\zeta_d := \exp(\frac{2i\pi}{d})$.

 $d \in \mathbb{N}_{\geqslant 1}$ is **regular** if W contains d-regular elements.

Theorem (Springer '74)

If $g \in W$ is d-regular, then $W_g := C_W(g)$ acts on $V(g, \zeta_d)$ as a CRG.

d: positive integer.

 $V(g,\zeta)$: ζ -eigenspace of $g \in GL(V)$.

Definition (Springer '74)

 $g \in W$ is d-regular if $V(g, \zeta_d) \cap X \neq \emptyset$, where $\zeta_d := \exp(\frac{2i\pi}{d})$. $d \in \mathbb{N}_{\geq 1}$ is regular if W contains d-regular elements.

Theorem (Springer '74)

If $g \in W$ is d-regular, then $W_g := C_W(g)$ acts on $V(g, \zeta_d)$ as a CRG.

Examples include

- $B_n \leqslant A_{2n-1}$ as centralizer of a 2-regular element.
- $F_4 \leqslant E_6$ as centralizer of a 2-regular element.
- $G(d,1,n) \leqslant G(1,1,dn)$ as centralizer of a *d*-regular element.
- $G_{31} \leqslant G_{37} (\simeq E_8)$ as centralizer of a 4-regular element.

 $\mathbb{P}(V)$: complex projective space attached to V.

 $\mathbb{P}(V)$: complex projective space attached to V. **Projective reflection:** image in PGL(V) of a reflection in GL(V)

 $\mathbb{P}(V)$: complex projective space attached to V.

Projective reflection: image in PGL(V) of a reflection in GL(V)

Definition

A finite group $G \leq PGL(V)$ is a **projective complex reflection group** (PCRG) if it is generated by projective reflections.

 $\mathbb{P}(V)$: complex projective space attached to V.

Projective reflection: image in PGL(V) of a reflection in GL(V)

Definition

A finite group $G \leq PGL(V)$ is a **projective complex reflection group** (PCRG) if it is generated by projective reflections.

If W is a CRG, then the image \widehat{W} of W in PGL(V) is a PCRG.

If W is irreducible, then $\widehat{W} = W/Z(W)$.

 $\mathbb{P}(V)$: complex projective space attached to V.

Projective reflection: image in PGL(V) of a reflection in GL(V)

Definition

A finite group $G \leq PGL(V)$ is a **projective complex reflection group** (PCRG) if it is generated by projective reflections.

If W is a CRG, then the image \widehat{W} of W in PGL(V) is a PCRG.

If W is irreducible, then $\widehat{W} = W/Z(W)$.

Example

We have $Z(G_4) = \{\pm I_2\}$ and $\widehat{G_4}$ has order 12. In fact $\widehat{G_4} \simeq \mathfrak{A}_4$.

Lemma

Every PCRG is equal to \widehat{W} for some $W \leq GL(V)$ CRG.

Lemma

Every PCRG is equal to \widehat{W} for some $W \leq GL(V)$ CRG.

Using preexisting work on the classification of PCRG, Shephard and Todd obtained the classification of irreducible CRGs.

Lemma

Every PCRG is equal to \widehat{W} for some $W \leq GL(V)$ CRG.

Using preexisting work on the classification of PCRG, Shephard and Todd obtained the classification of irreducible CRGs.

Theorem (Shephard, Todd '54)

If W is an irreducible CRG, then either $W \simeq G(m, p, n)$, or W belongs to the family G_4, \ldots, G_{37} of exceptional groups.

Lemma

Every PCRG is equal to \widehat{W} for some $W \leq GL(V)$ CRG.

Using preexisting work on the classification of PCRG, Shephard and Todd obtained the classification of irreducible CRGs.

Theorem (Shephard, Todd '54)

If W is an irreducible CRG, then either $W \simeq G(m, p, n)$, or W belongs to the family G_4, \ldots, G_{37} of exceptional groups.

Half of the exceptional groups have rank 2.

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

• W is conjugate to a subgroup of $U_2(\mathbb{C})$ (Maschke).

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

- W is conjugate to a subgroup of $U_2(\mathbb{C})$ (Maschke).
- \widehat{W} acts on $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$.

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

- W is conjugate to a subgroup of $U_2(\mathbb{C})$ (Maschke).
- \widehat{W} acts on $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$.

In fact, \widehat{W} is a finite subgroup of $SO_3(\mathbb{R})$. In other words, \widehat{W} is either dihedral, cyclic, or $\mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5$.

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

- W is conjugate to a subgroup of $U_2(\mathbb{C})$ (Maschke).
- \widehat{W} acts on $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$.

In fact, \widehat{W} is a finite subgroup of $SO_3(\mathbb{R})$. In other words, \widehat{W} is either dihedral, cyclic, or $\mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5$.

The 19 exceptional groups of rank 2 all have image \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

- W is conjugate to a subgroup of $U_2(\mathbb{C})$ (Maschke).
- \widehat{W} acts on $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$.

In fact, \widehat{W} is a finite subgroup of $SO_3(\mathbb{R})$. In other words, \widehat{W} is either dihedral, cyclic, or $\mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5$.

The 19 exceptional groups of rank 2 all have image \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

Let $s \in PGL(V)$ be a projective reflection.

- If dim V > 2, there is a unique reflection in GL(V) which lifts s.
- If dim V = 2, there are two.

Let $W \leq GL_2(\mathbb{C})$ be a CRG.

- W is conjugate to a subgroup of $U_2(\mathbb{C})$ (Maschke).
- \widehat{W} acts on $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$.

In fact, \widehat{W} is a finite subgroup of $SO_3(\mathbb{R})$. In other words, \widehat{W} is either dihedral, cyclic, or $\mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5$.

The 19 exceptional groups of rank 2 all have image \mathfrak{A}_4 , \mathfrak{S}_4 or \mathfrak{A}_5 .

Let $s \in PGL(V)$ be a projective reflection.

- If dim V > 2, there is a unique reflection in GL(V) which lifts s.
- If dim V = 2, there are two.

How to distinguish various lifts of \widehat{W} ?

Maximal lift

Proposition

Let $W \leq \operatorname{GL}(V)$ be a CRG. There is a unique maximal $W_f \leq \operatorname{GL}(V)$ such that $\widehat{W}_f = \widehat{W}$. We call W_f the full reflection group attached to W.

In other words, the family of lifts of a PCRG G admits a maximum \widetilde{G} .

Maximal lift

Proposition

Let $W \leq \operatorname{GL}(V)$ be a CRG. There is a unique maximal $W_f \leq \operatorname{GL}(V)$ such that $\widehat{W}_f = \widehat{W}$. We call W_f the full reflection group attached to W.

In other words, the family of lifts of a PCRG G admits a maximum \widetilde{G} .

Example

- $\widetilde{\mathfrak{A}_4} = G_7, \widetilde{\mathfrak{S}_4} = G_{11}, \widetilde{\mathfrak{A}_5} = G_{19}.$
- For i > 22, then $(G_i)_f = G_i$, except $(G_{25})_f = G_{26}$.
- For n > 2, $(G(m, p, n))_f = G(m, n \land p, n)$.
- For n = 2, $(G(m, p, 2))_f = G(\frac{2m}{p \wedge 2}, 2, 2)$.

Complex braid groups

 $W \leq GL(V)$ complex reflection group.

 $\mathcal{A} = \{ \mathsf{Ker}(s-1) \mid s \in W \text{ reflexion} \} \text{ the } reflection \textit{ arrangement of } W.$

Complex braid groups

 $W \leqslant GL(V)$ complex reflection group.

 $A = \{ Ker(s-1) \mid s \in W \text{ reflexion} \} \text{ the } reflection \text{ arrangement of } W.$

Theorem (Steinberg '64)

For any $E \subset V$, $W_E = \{w \in W \mid \forall v \in E, w.v = v\}$ is generated by the reflections it contains.

In particular, $X = V \setminus \bigcup_{H \in A} H$.

Complex braid groups

 $W \leq GL(V)$ complex reflection group.

 $A = \{ Ker(s-1) \mid s \in W \text{ reflexion} \} \text{ the } reflection \text{ arrangement of } W.$

Theorem (Steinberg '64)

For any $E \subset V$, $W_E = \{w \in W \mid \forall v \in E, w.v = v\}$ is generated by the reflections it contains.

In particular, $X = V \setminus \bigcup_{H \in A} H$.

Definition (Broué, Malle, Rouquier '98)

The **braid group** is $B = B(W) = \pi_1(X/W)$. The **pure braid group** is $P = P(W) = \pi_1(X)$.

We have a short exact sequence $P \hookrightarrow B \twoheadrightarrow W$.

Center of complex braid groups

In X, with basepoint x, consider the paths

$$\beta: t \mapsto e^{\frac{2i\pi t}{|Z(W)|}} x$$
 and $\pi: t \mapsto e^{2i\pi t} x$

Center of complex braid groups

In X, with basepoint x, consider the paths

$$\beta: t \mapsto e^{\frac{2i\pi t}{|Z(W)|}} x$$
 and $\pi: t \mapsto e^{2i\pi t} x$

We have $\pi \in Z(B) \cap P$.

The path β induces a loop in X/W and an element $\beta \in Z(B)$.

Center of complex braid groups

In X, with basepoint x, consider the paths

$$\beta: t \mapsto e^{\frac{2i\pi t}{|Z(W)|}} x$$
 and $\pi: t \mapsto e^{2i\pi t} x$

We have $\pi \in Z(B) \cap P$.

The path β induces a loop in X/W and an element $\beta \in Z(B)$.

Theorem (BMR '98, Bessis '15, Digne-Marin-Michel '11)

If W irreducible, then $Z(P)=\langle \pi \rangle$ and $Z(B)=\langle \beta \rangle$ and we have

$$Z(P) \hookrightarrow Z(B) \twoheadrightarrow Z(W)$$
.

 $\widehat{X} := \text{image of } X \text{ in } \mathbb{P}(V).$

$$\widehat{X} := \text{image of } X \text{ in } \mathbb{P}(V).$$

First idea: define projective complex braid group as $\pi_1(\widehat{X}/\widehat{W})$.

$$\widehat{X} := \text{image of } X \text{ in } \mathbb{P}(V).$$

First idea: define projective complex braid group as $\pi_1(\widehat{X}/\widehat{W})$.

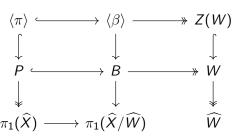
We have a commutative diagram of topological space

$$\begin{array}{c|c} X \xrightarrow{/W} X/W \\ /\mathbb{C}^* \downarrow & \downarrow/\mathbb{C}^* \\ \widehat{X} \xrightarrow{/W} \widehat{X}/W \end{array}$$

 $\widehat{X} := \text{image of } X \text{ in } \mathbb{P}(V).$

First idea: define projective complex braid group as $\pi_1(\widehat{X}/\widehat{W})$.

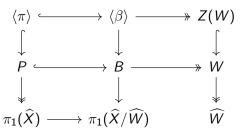
Which induces a diagram of groups



 $\widehat{X} := \text{image of } X \text{ in } \mathbb{P}(V).$

First idea: define projective complex braid group as $\pi_1(\widehat{X}/\widehat{W})$.

Which induces a diagram of groups



Theorem (BMR '98)

There is a morphism $\pi_1(\widehat{X}/\widehat{W}) \to \widehat{W}$ which completes the diagram in a commutative diagram where all short sequence are exact.

As pointed out by Digne, Marin, Michel, this last result is false.

As pointed out by Digne, Marin, Michel, this last result is false.

Example

$$A_2 = \left\langle \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \right
angle \leqslant \mathsf{GL}_2(\mathbb{C})$$

- $X = \{(x, y) \in \mathbb{C}^2 \mid y \notin \{x/2, -x, 2x\}\},\$
- \widehat{X} is $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$ minus 3 points,
- \widehat{X}/W is \mathbb{S}^2 minus one point: it is simply connected.

As pointed out by Digne, Marin, Michel, this last result is false.

Example

$$A_2 = \left\langle \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \right
angle \leqslant \mathsf{GL}_2(\mathbb{C})$$

- $X = \{(x, y) \in \mathbb{C}^2 \mid y \notin \{x/2, -x, 2x\}\},\$
- \widehat{X} is $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$ minus 3 points,
- \widehat{X}/W is \mathbb{S}^2 minus one point: it is simply connected.

Main problem in BMR's argument: the maps $\widehat{X} \to \widehat{X}/W$ and $X/W \to \widehat{X}/W$ are not fibrations (quotient by nonfree group actions).

As pointed out by Digne, Marin, Michel, this last result is false.

Example

$$A_2 = \left\langle \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \right
angle \leqslant \mathsf{GL}_2(\mathbb{C})$$

- $X = \{(x, y) \in \mathbb{C}^2 \mid y \notin \{x/2, -x, 2x\}\},\$
- \widehat{X} is $\mathbb{P}^1(\mathbb{C}) = \mathbb{S}^2$ minus 3 points,
- \widehat{X}/W is \mathbb{S}^2 minus one point: it is simply connected.

Main problem in BMR's argument: the maps $\widehat{X} \to \widehat{X}/W$ and $X/W \to \widehat{X}/W$ are not fibrations (quotient by nonfree group actions).

Proposition (G. '25)

BMR's result holds only for G_7 , G_{11} , G_{15} , G_{19} and G(m, p, n) where p|n.

Projective braid group

Second idea: remove all points with nontrivial stabilizer under \widehat{W} .

Projective braid group

Second idea: remove all points with nontrivial stabilizer under \widehat{W} .

Lemma

$$\operatorname{Stab}_{\widehat{W}}([x]) \neq 1 \Leftrightarrow x \in H \text{ a reflecting hyperplane or } x \in V(g,\zeta) \text{ for some } g \in W \text{ regular.}$$

In other words, we need to remove not only the reflecting hyperplanes, but also the (proper) regular eigenspaces.

Projective braid group

Second idea: remove all points with nontrivial stabilizer under \widehat{W} .

Lemma

$$\operatorname{Stab}_{\widehat{W}}([x]) \neq 1 \Leftrightarrow x \in H \text{ a reflecting hyperplane or } x \in V(g,\zeta) \text{ for some } g \in W \text{ regular.}$$

In other words, we need to remove not only the reflecting hyperplanes, but also the (proper) regular eigenspaces.

Definition

$$X_S = X_S(W) := \{x \in V \mid \operatorname{\mathsf{Stab}}_{\widehat{W}}([x]) = 1\}.$$

$$\widehat{B} := \widehat{B}(\widehat{W}) = \pi_1(\widehat{X}_S/\widehat{W})$$
 the projective braid group.

$$\widehat{P} := \widehat{P}(\widehat{W}) = \pi_1(\widehat{X}_S)$$
 the projective pure braid group.

Again, we have a short exact sequence $\widehat{P} \hookrightarrow \widehat{B} \twoheadrightarrow \widehat{W}$.

Enlarged braid group

Theorem (Shvartsman '96)

If
$$W = W_f$$
 is a Coxeter group, then $\widehat{B} = B/Z(B)$.

We want to generalize this result to CRGs.

Enlarged braid group

Theorem (Shvartsman '96)

If $W = W_f$ is a Coxeter group, then $\widehat{B} = B/Z(B)$.

We want to generalize this result to CRGs.

Definition

 $B_S := B_S(W) = \pi_1(X_S/W)$ the enlarged braid group.

 $P_S := P_S(W) = \pi_1(X_S)$ the enlarged pure braid group.

Again we have a short exact sequence $P_S \hookrightarrow B_S \twoheadrightarrow W$.

The inclusion $X_S \to X$ induces morphisms $B_S \to B$ and $P_S \to P$.

The inclusion $X_S \to X$ induces morphisms $B_S \to B$ and $P_S \to P$.

Proposition (G. '25)

- The morphisms $B_S \to B$ and $P_S \to P$ are surjective.
- The morphism $B_S \to B$ is an isomorphism if $W = W_f$.
- In general $B_S = \pi^{-1}(W)$, where $\pi : B(W_f) \to W_f$ is the natural projection.

In particular, B_S is finite index subgroup of $B(W_f)$.

The inclusion $X_S \to X$ induces morphisms $B_S \to B$ and $P_S \to P$.

Proposition (G. '25)

- The morphisms $B_S \to B$ and $P_S \to P$ are surjective.
- The morphism $B_S \to B$ is an isomorphism if $W = W_f$.
- In general $B_S = \pi^{-1}(W)$, where $\pi : B(W_f) \to W_f$ is the natural projection.

In particular, B_S is finite index subgroup of $B(W_f)$.

In X_S with basepoint x, consider the paths β_S and π_S as before.

The inclusion $X_S \to X$ induces morphisms $B_S \to B$ and $P_S \to P$.

Proposition (G. '25)

- The morphisms $B_S \to B$ and $P_S \to P$ are surjective.
- The morphism $B_S \to B$ is an isomorphism if $W = W_f$.
- In general $B_S = \pi^{-1}(W)$, where $\pi : B(W_f) \to W_f$ is the natural projection.

In particular, B_S is finite index subgroup of $B(W_f)$.

In X_S with basepoint x, consider the paths β_S and π_S as before.

Proposition (G. '25)

If W irreducible, then $Z(P_S) = \langle \pi_S \rangle$ and $Z(B_S) = \langle \beta_S \rangle$.

By construction, the action of \widehat{W} on $\widehat{X_S}$ is free, as well as the induced action of \mathbb{C}^* on X_S/W .

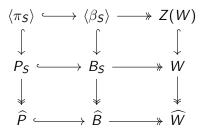
By construction, the action of \widehat{W} on $\widehat{X_S}$ is free, as well as the induced action of \mathbb{C}^* on X_S/W .

In the following diagram

$$\begin{array}{ccc} X_S & \xrightarrow{/W} & X_S/W \\ /\mathbb{C}^* & & \downarrow/\mathbb{C}^* \\ \widehat{X_S} & \xrightarrow{/W} & \widehat{X_S}/W \end{array}$$

all arrows are fibrations.

The last diagram induces the following one where all sequences are exact.



The last diagram induces the following one where all sequences are exact.

$$\langle \pi_{S} \rangle \longleftrightarrow \langle \beta_{S} \rangle \longrightarrow Z(W)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P_{S} \longleftrightarrow B_{S} \longrightarrow W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\widehat{P} \longleftrightarrow \widehat{B} \longrightarrow \widehat{W}$$

In particular, if $W = W_f$, then $\widehat{B} = B/Z(B)$.

The last diagram induces the following one where all sequences are exact.

$$\langle \pi_{S} \rangle \longrightarrow \langle \beta_{S} \rangle \longrightarrow Z(W)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P_{S} \longrightarrow B_{S} \longrightarrow W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\widehat{P} \longrightarrow \widehat{B} \longrightarrow \widehat{W}$$

In particular, if $W = W_f$, then $\widehat{B} = B/Z(B)$.

Theorem (G. '25)

Let $G \subset PGL(V)$ be a projective complex reflection group.

The projective braid group of G is $\widehat{B} = B(\widetilde{G})/Z(B(\widetilde{G}))$.

Let $R = \{d \ge 1 \mid d \text{ is regular for } W \text{ and maximal for divisibility} \}$ Let $R' = \{d/|Z(W)| \mid d \in R\}.$

Let $R = \{d \ge 1 \mid d \text{ is regular for } W \text{ and maximal for divisibility} \}$ Let $R' = \{d/|Z(W)| \mid d \in R\}.$

The original motivation of Shvartsman was to study torsion elements in B/Z(B). He proved the following results for $W=W_f$ a Coxeter group.

Let $R = \{d \geqslant 1 \mid d \text{ is regular for } W \text{ and maximal for divisibility} \}$ Let $R' = \{d/|Z(W)| \mid d \in R\}.$

The original motivation of Shvartsman was to study torsion elements in B/Z(B). He proved the following results for $W=W_f$ a Coxeter group.

Proposition (Shvartsman 96)

The order of a torsion element in B/Z(B) lies in R'. Moreover, for all $d \in R'$, B/Z(B) contains an element of order d.

Let $R = \{d \ge 1 \mid d \text{ is regular for } W \text{ and maximal for divisibility} \}$ Let $R' = \{d/|Z(W)| \mid d \in R\}.$

The original motivation of Shvartsman was to study torsion elements in B/Z(B). He proved the following results for $W=W_f$ a Coxeter group.

Proposition (Shvartsman 96)

The order of a torsion element in B/Z(B) lies in R'. Moreover, for all $d \in R'$, B/Z(B) contains an element of order d.

Corollary

An element $b \in B$ has a central power if and only if $b^d \in Z(B)$ for some $d \in R'$.

Let $R = \{d \ge 1 \mid d \text{ is regular for } W \text{ and maximal for divisibility} \}$ Let $R' = \{d/|Z(W)| \mid d \in R\}.$

The original motivation of Shvartsman was to study torsion elements in B/Z(B). He proved the following results for $W=W_f$ a Coxeter group.

Proposition (Shvartsman 96)

The order of a torsion element in B/Z(B) lies in R'. Moreover, for all $d \in R'$, B/Z(B) contains an element of order d.

Corollary

An element $b \in B$ has a central power if and only if $b^d \in Z(B)$ for some $d \in R'$.

Note that this does not apply to every finite Coxeter group.

Regular braids

A possibility of "lifting" Springer theory of regular elements to complex braid groups was quickly formulated by Broué, Michel.

Regular braids

A possibility of "lifting" Springer theory of regular elements to complex braid groups was quickly formulated by Broué, Michel.

Definition

A element $b \in B$ is a *d*-regular braid if $b^d = \pi$.

Regular braids

A possibility of "lifting" Springer theory of regular elements to complex braid groups was quickly formulated by Broué, Michel.

Definition

A element $b \in B$ is a d-regular braid if $b^d = \pi$.

The complete answer came more than a decade later:

Theorem (Bessis '15, G. '23)

Let W be a complex reflection group

- d is regular for W if and only if d-regular braids exist in B.
- If so, then all d-regular braids are conjugate in B. The image in W
 of a d-regular braid is a d-regular element.
- If $\rho \in B$ is d-regular, then $C_B(\rho) \simeq B(W_g)$, where g is the image of ρ in W.

Proposition (G. '23)

An element $b \in B$ has a central power if and only if b is a power of a d-regular braid where $d \in R$.

Proposition (G. '23)

An element $b \in B$ has a central power if and only if b is a power of a d-regular braid where $d \in R$.

If $\rho \in B$ is a d-regular braid with $d \in R$, then the image of ρ in B/Z(B) has order d/|Z(W)|.

Proposition (G. '23)

An element $b \in B$ has a central power if and only if b is a power of a d-regular braid where $d \in R$.

If $\rho \in B$ is a d-regular braid with $d \in R$, then the image of ρ in B/Z(B) has order d/|Z(W)|. In particular we obtain

Corollary (G. '23)

 $b \in B$ has a central power if and only if $b^d \in Z(B)$ for some $d \in R'$.

Proposition (G. '23)

An element $b \in B$ has a central power if and only if b is a power of a d-regular braid where $d \in R$.

If $\rho \in B$ is a d-regular braid with $d \in R$, then the image of ρ in B/Z(B) has order d/|Z(W)|. In particular we obtain

Corollary (G. '23)

 $b \in B$ has a central power if and only if $b^d \in Z(B)$ for some $d \in R'$.

This works for arbitrary complex reflection groups, without the assumption that $W=W_f$. However, the proof is case by case.

Finally, let us try again to compute $\pi_1(\widehat{X}/W)$. Let $K \leq B$ denote the subgroup generated by elements having a central power.

Finally, let us try again to compute $\pi_1(\widehat{X}/W)$. Let $K \leq B$ denote the subgroup generated by elements having a central power.

Proposition (G. '25)

The natural morphism $p: B \to \pi_1(\widehat{X}/W)$ is surjective and $K \subset \operatorname{\mathsf{Ker}}(p)$.

In other words, $\pi_1(\widehat{X}/W)$ is a quotient of B/K.

Finally, let us try again to compute $\pi_1(\widehat{X}/W)$. Let $K \leq B$ denote the subgroup generated by elements having a central power.

Proposition (G. '25)

The natural morphism $p: B \to \pi_1(\widehat{X}/W)$ is surjective and $K \subset \operatorname{\mathsf{Ker}}(p)$.

In other words, $\pi_1(\widehat{X}/W)$ is a quotient of B/K.

Proposition (Unpublished, tedious computations '25)

The quotient B/K is almost always a cyclic groups (often trivial).

Finally, let us try again to compute $\pi_1(\widehat{X}/W)$. Let $K \leq B$ denote the subgroup generated by elements having a central power.

Proposition (G. '25)

The natural morphism $p: B \to \pi_1(\widehat{X}/W)$ is surjective and $K \subset \operatorname{Ker}(p)$.

In other words, $\pi_1(\widehat{X}/W)$ is a quotient of B/K.

Proposition (Unpublished, tedious computations '25)

The quotient B/K is almost always a cyclic groups (often trivial).

Is there a way to compute the fundamental group $\pi_1(\widehat{X}/W)$ in general ?

Thank you!

- D. Bessis. "Finite complex reflection arrangements are $K(\pi, 1)$ ". In: Ann. of Math. (2) 181.3 (2015).
- M. Broué, G. Malle, R. Rouquier. "Complex reflection groups, braid groups, Hecke algebras". In: *J. Reine Angew. Math.* 500 (1998).
- F. Digne, I. Marin, J. Michel. "The center of pure complex braid groups". In: *J. Algebra* 347 (2011).
- O. Garnier. "Regular theory in complex braid groups". In: J. Algebra 620 (2023).
- O. Garnier. "Proof of Shvartsman's conjecture on braid groups of projective complex reflection groups". arxiv:2507.23561
- G. Lehrer and D. Taylor. "Unitary reflection groups". Cambridge University Press (2009).
- O. Shvartsman. "Torsion in the quotient of the Artin-Brieskorn braid groups and regular springer numbers". In: Funktsional. Anal. i Prilozhen. 30.1 (1996).