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Notations for complex reflection groups

V. complex vector space of dimension n < co.
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Notations for complex reflection groups
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Reflection: s € GL(V) with finite order and codim Ker(s — 1) = 1.

Definition
A finite group W < GL(V) is a complex reflection group (CRG) if it is
generated by reflections.
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Notations for complex reflection groups

V. complex vector space of dimension n < co.
Reflection: s € GL(V) with finite order and codim Ker(s — 1) = 1.

Definition

A finite group W < GL(V) is a complex reflection group (CRG) if it is
generated by reflections.

If V is a real vector space, then W is a Coxeter group.

W irreducible: W — GL(V) is an irreducible representation.
Any CRG decomposes as a product of irreducible CRGs.
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Reflection groups

Notations for complex reflection groups

V. complex vector space of dimension n < co.
Reflection: s € GL(V) with finite order and codim Ker(s — 1) = 1.

Definition

A finite group W < GL(V) is a complex reflection group (CRG) if it is
generated by reflections.

If V is a real vector space, then W is a Coxeter group.

W irreducible: W — GL(V) is an irreducible representation.
Any CRG decomposes as a product of irreducible CRGs.

The set of regular vectors is X := {v € V | Staby/(v) = 1}.
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Reflection groups

Examples

@ Ford > 1, pug < GL1(C) is a CRG with X = C*.
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@ Ford > 1, pug < GL1(C) is a CRG with X = C*.

@ The group
_ /(i O\ (1 j
a=((4 2)-G )

is an irreducible CRG of order 24 with

X ={(x,y) € (C*)V | y ¢ {i’x,—ix}}}.
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Reflection groups

Examples

@ Ford > 1, pug < GL1(C) is a CRG with X = C*.

@ The group
_ /(i O\ (1 j
a=((4 2)-G )

is an irreducible CRG of order 24 with

X ={(x,y) € (C*)V | y ¢ {i’x,—ix}}}.

e For m > 1 an integer, G(m,1,n) < GL,(C) is the group monomial
matrices with nonzero entries in . It is a CRG with

X ={xe(C)" | xi & pmx}
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Reflection groups

Examples

For d > 1, pg < GL1(C) is a CRG with X = C*.

The group
_ Jjo0y (1
(96 7))

is an irreducible CRG of order 24 with

X ={(x,y) € (C*)V | y ¢ {i’x,—ix}}}.

For m > 1 an integer, G(m, 1, n) < GL,(C) is the group monomial
matrices with nonzero entries in . It is a CRG with

X ={xe(C)" | xi & pmx}

For p|m, G(m, p, n) < G(m,1, n) is the subgroup of matrices whose
product of nonzero entries lies in py,/,. It is a CRG.
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Reflection groups

Regular elements (Springer '74)

d: positive integer.
V(g,(): (-eigenspace of g € GL(V).
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Regular elements (Springer '74)

d: positive integer.
V(g,(): (-eigenspace of g € GL(V).

Definition (Springer '74)

g € W is d-regular if V(g,(y) N X # &, where (4 := exp(%)_
d € N3 is regular if W contains d-regular elements.
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d: positive integer.
V(g,(): (-eigenspace of g € GL(V).

Definition (Springer '74)

g € W is d-regular if V(g,(y) N X # &, where (4 := exp(%).
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Reflection groups

Regular elements (Springer '74)

d: positive integer.
V(g,(): (-eigenspace of g € GL(V).

Definition (Springer '74)

g € W is d-regular if V(g,(y) N X # &, where (4 := exp(%).
d € N3 is regular if W contains d-regular elements.

Theorem (Springer '74)

If g € W is d-regular, then Wy := Cw/(g) acts on V(g,(4) as a CRG.

Examples include
e B, < Azp_1 as centralizer of a 2-regular element.
o F, < Eg as centralizer of a 2-regular element.
e G(d,1,n) < G(1,1,dn) as centralizer of a d-regular element.
@ G31 < Gz7(~ Eg) as centralizer of a 4-regular element.
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Reflection groups

Projective reflection groups

P(V): complex projective space attached to V.
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Projective reflection groups

P(V): complex projective space attached to V.
Projective reflection: image in PGL(V) of a reflection in GL(V)

Definition

A finite group G < PGL(V) is a projective complex reflection group
(PCRG) if it is generated by projective reflections.
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Reflection groups

Projective reflection groups

P(V): complex projective space attached to V.
Projective reflection: image in PGL(V) of a reflection in GL(V)

Definition

A finite group G < PGL(V) is a projective complex reflection group
(PCRG) if it is generated by projective reflections.

If W is a CRG, then the image W of W in PGL(V) is a PCRG.
If W is irreducible, then W = W /Z(W).
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Reflection groups

Projective reflection groups

P(V): complex projective space attached to V.
Projective reflection: image in PGL(V) of a reflection in GL(V)

Definition

A finite group G < PGL(V) is a projective complex reflection group
(PCRG) if it is generated by projective reflections.

If W is a CRG, then the image W of W in PGL(V) is a PCRG.
If W is irreducible, then W = W /Z(W).

We have Z(Gs) = {£h} and a has order 12. In fact a ~ Ay
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Reflection groups

Lifts of projective reflection groups and classification

Every PCRG is equal to W for some W < GL(V) CRG.
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Every PCRG is equal to W for some W < GL(V) CRG.

Using preexisting work on the classification of PCRG, Shephard and Todd
obtained the classification of irreducible CRGs.
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Reflection groups

Lifts of projective reflection groups and classification

Every PCRG is equal to W for some W < GL(V) CRG.

Using preexisting work on the classification of PCRG, Shephard and Todd
obtained the classification of irreducible CRGs.

Theorem (Shephard, Todd '54)

If W is an irreducible CRG, then either W ~ G(m, p,n), or W belongs
to the family Gy, ..., Gs7 of exceptional groups.
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Reflection groups

Lifts of projective reflection groups and classification

Every PCRG is equal to W for some W < GL(V) CRG.

Using preexisting work on the classification of PCRG, Shephard and Todd
obtained the classification of irreducible CRGs.

Theorem (Shephard, Todd '54)

If W is an irreducible CRG, then either W ~ G(m, p,n), or W belongs
to the family Gy, ..., Gs7 of exceptional groups.

Half of the exceptional groups have rank 2.
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Reflection groups

Case of rank 2 groups

Let W < GL2(C) be a CRG.
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Case of rank 2 groups

Let W < GL2(C) be a CRG.
e W is conjugate to a subgroup of Ux(C) (Maschke).
o W acts on P1(C) = S2.
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Reflection groups

Case of rank 2 groups

Let W < GL2(C) be a CRG.
e W is conjugate to a subgroup of Ux(C) (Maschke).
o W acts on P1(C) = S2.

In fact, W is a finite subgroup of SO3(R). In other words, W is either
dihedral, cyclic, or 24, G4, Us.
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Case of rank 2 groups

Let W < GL2(C) be a CRG.
e W is conjugate to a subgroup of Ux(C) (Maschke).
o W acts on P1(C) = S2.

In fact, W is a finite subgroup of SO3(R). In other words, W is either
dihedral, cyclic, or 24, G4, Us.

The 19 exceptional groups of rank 2 all have image 204, S4 or Us.
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Reflection groups

Case of rank 2 groups

Let W < GL2(C) be a CRG.
e W is conjugate to a subgroup of Ux(C) (Maschke).
o W acts on P1(C) = S2.

In fact, W is a finite subgroup of SO3(R). In other words, W is either
dihedral, cyclic, or 24, G4, Us.

The 19 exceptional groups of rank 2 all have image 204, S4 or Us.

Let s € PGL(V) be a projective reflection.
e If dim V > 2, there is a unique reflection in GL(V') which lifts s.

o If dim V = 2, there are two.
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Reflection groups

Case of rank 2 groups

Let W < GL2(C) be a CRG.
e W is conjugate to a subgroup of Ux(C) (Maschke).
o W acts on P1(C) = S2.

In fact, W is a finite subgroup of SO3(R). In other words, W is either
dihedral, cyclic, or 24, G4, Us.

The 19 exceptional groups of rank 2 all have image 204, S4 or Us.

Let s € PGL(V) be a projective reflection.
e If dim V > 2, there is a unique reflection in GL(V') which lifts s.

o If dim V = 2, there are two.

How to distinguish various lifts of W ?
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Reflection groups

Maximal lift

Proposition
Let W < GL(V) be a CRG. There is a unique maximal W < GL(V)
such that Wf‘ W. We call Ws the full reflection group attached to W.

In other words, the family of lifts of a PCRG G admits a maximum G.
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Reflection groups

Maximal lift

Proposition
Let W < GL(V) be a CRG. There is a unique maximal W < GL(V)
such that Wf‘ W. We call Ws the full reflection group attached to W.

In other words, the family of lifts of a PCRG G admits a maximum G.

o Ay = G7,64 = Gi1,%s = Gio.
@ For i > 22, then (G,‘)f = G;, except (G25)f = Gog.
e Forn>2, (G(m,p,n))r = G(m,nA p,n).

e Forn=2, (G(m,p,2))r = G(,f/’\"2,2 2).
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Braid groups

Complex braid groups

W < GL(V) complex reflection group.
A = {Ker(s — 1) | s € W reflexion} the reflection arrangement of W.
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Braid groups

Complex braid groups

W < GL(V) complex reflection group.
A = {Ker

s—1) | s € W reflexion} the reflection arrangement of W.

Theorem

(
(

Steinberg '64)
Forany EC V, Wg ={w e W | Vv € E,w.v = v} is generated by the
reflections it contains.

In particular, X = V\ Jyca H.
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Braid groups

Complex braid groups

W < GL(V) complex reflection group.
A = {Ker

s—1) | s € W reflexion} the reflection arrangement of W.

(

(Steinberg '64)

Forany EC V, Wg ={w e W | Vv € E,w.v = v} is generated by the
reflections it contains.

In particular, X = V\ Jyca H.

Theorem

Definition (Broué, Malle, Rouquier '98)

The braid group is B = B(W) = m1(X/W). The pure braid group is
P = P(W) = m(X).

We have a short exact sequence P — B — W.
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Braid groups

Center of complex braid groups

In X, with basepoint x, consider the paths

2imt .
Bt eZWix and 7t — e2™ix
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Braid groups

Center of complex braid groups

In X, with basepoint x, consider the paths

2imt .
Bt eZWix and 7t — e2™ix

We have m € Z(B)N P.
The path (3 induces a loop in X/W and an element 5 € Z(B).
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Braid groups

Center of complex braid groups

In X, with basepoint x, consider the paths

2imt .
Bt eZWix and 7t — e2™ix

We have m € Z(B)N P.
The path (3 induces a loop in X/W and an element 5 € Z(B).

Theorem (BMR '98, Bessis '15, Digne-Marin-Michel '11)

If W irreducible, then Z(P) = (r) and Z(B) = () and we have

Z(P) — Z(B) - Z(W).
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Braid groups

First try at projective complex braid group

o~

X := image of X in P(V).
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Braid groups

First try at projective complex braid group

o~

X := image of X in P(V).
First idea: define projective complex braid group as ﬂl()?/W)

We have a commutative diagram of topological space

AL
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Braid groups

First try at projective complex braid group

o~

X := image of X in P(V).
First idea: define projective complex braid group as ﬂl()?/W)

Which induces a diagram of groups
(m) ——

3
1

m(X) —— m(

— Z(W)

(B)
T
PR

/W)
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Braid groups

First try at projective complex braid group
X := image of X in P(V).

First idea: define projective complex braid group as ﬂl()?/W)
Which induces a diagram of groups

() ——— ) — Z

(W)
;
L

m(X) —— m(X/W) w

Theorem (BMR '98)

There is a morphism 7r1()A( /W) — W which completes the diagram in a
commutative diagram where all short sequence are exact.
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Braid groups

A problem

As pointed out by Digne, Marin, Michel, this last result is false.
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Braid groups

A problem

As pointed out by Digne, Marin, Michel, this last result is false.

(Empe
w8

o X ={(xy) €C?|y¢{x/2,—x,2x}},
o Xis P(C) = S? minus 3 points,

° )?/W is S? minus one point: it is simply connected.
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Braid groups

A problem

As pointed out by Digne, Marin, Michel, this last result is false.

(Empe
w8

o X ={(xy) €C?|y¢{x/2,—x,2x}},
o Xis P(C) = S? minus 3 points,

° )?/W is S? minus one point: it is simply connected.

Main problem in BMR's argument: the maps X — )A(/W and
X /W — X /W are not fibrations (quotient by nonfree group actions).
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Braid groups

A problem
As pointed out by Digne, Marin, Michel, this last result is false.

(Empe |
w8

o X ={(xy) €C?|y¢{x/2,—x,2x}},
o Xis P(C) = S? minus 3 points,

° )?/W is S? minus one point: it is simply connected.

.

Main problem in BMR's argument: the maps X — )A(/W and
X /W — X /W are not fibrations (quotient by nonfree group actions).

Proposition (G. '25)
BMR's result holds only for G7, Gi1, Gis, Gig and G(m, p, n) where p|n.
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Braid groups

Projective braid group

Second idea: remove all points with nontrivial stabilizer under W.
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Braid groups

Projective braid group

Second idea: remove all points with nontrivial stabilizer under W.

x € H a reflecting hyperplane or
x € V(g,() for some g € W regular.

Stabi([x]) #1 &

In other words, we need to remove not only the reflecting hyperplanes,
but also the (proper) regular eigenspaces.

Owen Garnier Projective complex braid groups September 23rd, 2025 12 /20



Braid groups

Projective braid group

Second idea: remove all points with nontrivial stabilizer under W.

x € H a reflecting hyperplane or
x € V(g,() for some g € W regular.

Stabi([x]) #1 &

In other words, we need to remove not only the reflecting hyperplanes,
but also the (proper) regular eigenspaces.

Definition

Xs = Xs(W) :={x € V| Staby([x]) = 1}.
B:= I§(W) = ﬂl()/(;/W) the projective braid group.

~

P := P(W) = 71(Xs) the projective pure braid group.

Again, we have a short exact sequence P — B —» W.
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Braid groups

Enlarged braid group

Theorem (Shvartsman '96)
If W = W is a Coxeter group, then B = B/Z(B).

We want to generalize this result to CRGs.
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Braid groups

Enlarged braid group

Theorem (Shvartsman '96)
If W = W is a Coxeter group, then B = B/Z(B).

We want to generalize this result to CRGs.

Definition

Bs := Bs(W) = 71(Xs/W) the enlarged braid group.
Ps := Ps(W) = m1(Xs) the enlarged pure braid group.

Again we have a short exact sequence Ps — Bs — W.
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Braid groups

Computation of enlarged braid group

The inclusion Xs — X induces morphisms Bs — B and Ps — P.
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Braid groups

Computation of enlarged braid group

The inclusion Xs — X induces morphisms Bs — B and Ps — P.

Proposition (G. '25)

@ The morphisms Bs — B and Ps — P are surjective.

@ The morphism Bs — B is an isomorphism if W = Wk.

o In general Bs = 7 1(W), where 7 : B(W;) — W; is the natural
projection.

In particular, Bs is finite index subgroup of B(W).
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Braid groups

Computation of enlarged braid group

The inclusion Xs — X induces morphisms Bs — B and Ps — P.

Proposition (G. '25)

@ The morphisms Bs — B and Ps — P are surjective.

@ The morphism Bs — B is an isomorphism if W = Wk.

o In general Bs = 7 1(W), where 7 : B(W;) — W; is the natural
projection.

In particular, Bs is finite index subgroup of B(W).

In Xs with basepoint x, consider the paths 85 and s as before.
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Braid groups

Computation of enlarged braid group

The inclusion Xs — X induces morphisms Bs — B and Ps — P.

Proposition (G. '25)

@ The morphisms Bs — B and Ps — P are surjective.

@ The morphism Bs — B is an isomorphism if W = Wk.

o In general Bs = 7 1(W), where 7 : B(W;) — W; is the natural
projection.

In particular, Bs is finite index subgroup of B(W).

In Xs with basepoint x, consider the paths 85 and s as before.

Proposition (G. '25)

If W irreducible, then Z(Ps) = (ws) and Z(Bs) = (Bs).

Owen Garnier Projective complex braid groups September 23rd, 2025 14 /20



Braid groups

Diagram

By construction, the action of W on Xs is free, as well as the induced
action of C* on Xs/W.
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Braid groups

Diagram

By construction, the action of W on Xs is free, as well as the induced
action of C* on Xs/W.

In the following diagram

el e

Xs —— Xs/W

all arrows are fibrations.
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Braid groups

Diagram

The last diagram induces the following one where all sequences are exact.

(rs) —— (Bs) —» Z(W)

|

|

Ps‘ Bs s W
|
B

!

S
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Braid groups

Diagram

The last diagram induces the following one where all sequences are exact.

(rs) —— (Bs) —» Z(W)

L |

Ps‘ Bs > W
SR
P B > W

In particular, if W = W, then B = B/Z(B).
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Braid groups

Diagram

The last diagram induces the following one where all sequences are exact.

(ms) —— (Bs) —» Z(W)

L |

Ps‘ Bs > W
SR
P B > W

In particular, if W = W, then B = B/Z(B).

Theorem (G. '25)
Let G C PGL(V) be a projective complex reflection group.
The projective braid group of G is B = B(G)/Z(B(G)).
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Regular braids

Shvartsman results on elements with a central power

Let R={d > 1| d is regular for W and maximal for divisibility}
Let R" = {d/|Z(W)| | d € R}.
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Regular braids

Shvartsman results on elements with a central power

Let R={d > 1| d is regular for W and maximal for divisibility}
Let R" = {d/|Z(W)| | d € R}.

The original motivation of Shvartsman was to study torsion elements in
B/Z(B). He proved the following results for W = Wy a Coxeter group.
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Regular braids

Shvartsman results on elements with a central power
Let R={d > 1| d is regular for W and maximal for divisibility}
Let R = {d/|Z(W)| | d € R}.

The original motivation of Shvartsman was to study torsion elements in
B/Z(B). He proved the following results for W = Wy a Coxeter group.

Proposition (Shvartsman 96)

The order of a torsion element in B/Z(B) lies in R'. Moreover, for all
d € R, B/Z(B) contains an element of order d.
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Regular braids

Shvartsman results on elements with a central power

Let R={d > 1| d is regular for W and maximal for divisibility}
Let R" = {d/|Z(W)| | d € R}.

The original motivation of Shvartsman was to study torsion elements in
B/Z(B). He proved the following results for W = Wy a Coxeter group.

Proposition (Shvartsman 96)

The order of a torsion element in B/Z(B) lies in R'. Moreover, for all
d € R, B/Z(B) contains an element of order d.

v

An element b € B has a central power if and only if b9 € Z(B) for some
deR.

4
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Regular braids

Shvartsman results on elements with a central power

Let R={d > 1| d is regular for W and maximal for divisibility}
Let R" = {d/|Z(W)| | d € R}.

The original motivation of Shvartsman was to study torsion elements in
B/Z(B). He proved the following results for W = Wy a Coxeter group.

Proposition (Shvartsman 96)

The order of a torsion element in B/Z(B) lies in R'. Moreover, for all
d € R, B/Z(B) contains an element of order d.

v

An element b € B has a central power if and only if b9 € Z(B) for some
deR.

4

Note that this does not apply to every finite Coxeter group.
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Regular braids

Regular braids

A possibility of “lifting” Springer theory of regular elements to complex
braid groups was quickly formulated by Broué, Michel.
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Regular braids
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Regular braids

A possibility of “lifting” Springer theory of regular elements to complex
braid groups was quickly formulated by Broué, Michel.

Definition

A element b € B is a d-regular braid if b9 = 7.

The complete answer came more than a decade later:

Theorem (Bessis '15, G. '23)

Let W be a complex reflection group

e d is regular for W if and only if d-regular braids exist in B.

@ If so, then all d-regular braids are conjugate in B. The image in W
of a d-regular braid is a d-regular element.

o If p € B is d-regular, then Cg(p) ~ B(W,), where g is the image of
pin W.
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Generalization of Shvartsman’s result

Proposition (G. '23)

An element b € B has a central power if and only if b is a power of a
d-regular braid where d € R.
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Generalization of Shvartsman’s result

Proposition (G. '23)

An element b € B has a central power if and only if b is a power of a
d-regular braid where d € R.

If p € B is a d-regular braid with d € R, then the image of p in B/Z(B)
has order d/|Z(W)|.
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d-regular braid where d € R.

If p € B is a d-regular braid with d € R, then the image of p in B/Z(B)
has order d/|Z(W)|. In particular we obtain

Corollary (G. '23)
b € B has a central power if and only if b9 € Z(B) for some d € R'.
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Generalization of Shvartsman’s result

Proposition (G. '23)

An element b € B has a central power if and only if b is a power of a
d-regular braid where d € R.

If p € B is a d-regular braid with d € R, then the image of p in B/Z(B)
has order d/|Z(W)|. In particular we obtain

Corollary (G. '23)
b € B has a central power if and only if b9 € Z(B) for some d € R'.

This works for arbitrary complex reflection groups, without the
assumption that W = Ws. However, the proof is case by case.
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Consequences on computations ?

Finally, let us try again to compute 7T1()A(/ W). Let K < B denote the
subgroup generated by elements having a central power.
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Consequences on computations ?

Finally, let us try again to compute 7r1()A(/ W). Let K < B denote the
subgroup generated by elements having a central power.

Proposition (G. '25)

The natural morphism p: B — 771()?/ W) is surjective and K C Ker(p).

In other words, 771()?/ W) is a quotient of B/K.
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The natural morphism p: B — 771()?/ W) is surjective and K C Ker(p).
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Proposition (Unpublished, tedious computations '25)
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Consequences on computations ?

Finally, let us try again to compute 7r1()A(/ W). Let K < B denote the
subgroup generated by elements having a central power.

Proposition (G. '25)

The natural morphism p: B — 771()?/ W) is surjective and K C Ker(p).

In other words, 771()?/ W) is a quotient of B/K.

Proposition (Unpublished, tedious computations '25)

The quotient B/K is almost always a cyclic groups (often trivial).

Is there a way to compute the fundamental group 7T1()A</ W) in general ?
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Thank you !
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