TD 7 - Anneaux et corps

† Anneaux euclidiens

Exercice 1 (Entiers d'Eisenstein). On pose $j:=e^{\frac{2i\pi}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$. On rappelle que j est racine du polynôme X^2+X+1 . On considère $\mathbb{Z}[j]$, l'ensemble des *entiers d'Eisenstein*, défini comme l'ensemble des nombres complexes de la forme a+jb avec $a,b\in\mathbb{Z}$.

Partie 1:

- 1. Montrer que $\mathbb{Z}[j]$ est un sous-anneau de \mathbb{C} .
- 2. Représenter graphiquement l'ensemble $\mathbb{Z}[j]$ dans le plan complexe.

Partie 2 : Propriétés de la norme et éléments inversibles.

On considère l'application $N: \mathbb{Z}[j] \to \mathbb{R}_+$ définie pour $z \in \mathbb{Z}[j]$ par $N(z) = z.\overline{z} = |z|^2$.

- 1. Montrer que N est multiplicative i.e. que pour tout $z, z' \in \mathbb{Z}[j]$, on a N(zz') = N(z)N(z').
- 2. Soit $a+jb\in\mathbb{Z}[j]$ montrer que $N(z)=a^2-ab+b^2$. En déduire que pour tout $z\in\mathbb{Z}[j]$, on a $N(z)\in\mathbb{N}$.
- 3. Montrer que $z \in \mathbb{Z}[j]^{\times}$ si et seulement si N(z) = 1.
- 4. Vérifier que $N(a+bj) = \frac{(a+b)^2 + 3(a-b)^2}{4}$ pour tout $a+bj \in \mathbb{Z}[j]$.
- 5. Déduire des questions précédentes que $\mathbb{Z}[j]^{\times} = \{\pm 1, \pm j, \pm j^2\}.$

Partie 3: $\mathbb{Z}[j]$ est euclidien.

On remarquera que le plan complexe peut être pavé par des triangles équilatéraux de côté 1. Tout nombre complexe z appartient à un tel triangle et on peut montrer que pour un des sommets s de ce triangle, on a $|z-s| \le \frac{\sqrt{3}}{3}$.

- 1. Soit $z_1, z_2 \in \mathbb{Z}[j]$. On pose $z = \frac{z_1}{z_2}$. Expliquer pourquoi il existe $q \in \mathbb{Z}[j]$ tel que $|z q| \leq \frac{\sqrt{3}}{3}$.
- 2. On pose $r = z_1 qz_2$. Montrer que $N(r) < N(z_2)$.
- 3. En déduire que $\mathbb{Z}[j]$ est un anneau euclidien.

† Un critère d'irréductibilité

Exercice 2. Soit k un corps.

- 1. Montrer que si $P \in \mathbb{k}[X]$ est irréductible et $\deg(P) > 1$ alors P n'a pas de racines dans \mathbb{k} .
- 2. Que pensez-vous de la réciproque?
- 3. (a) Montrer que les polynômes de degré 1 de $\mathbb{k}[X]$ sont irréductibles dans $\mathbb{k}[X]$.
 - (b) Montrer que si $P \in \mathbb{k}[X]$ n'a pas de racines dans \mathbb{k} et $\deg(P) = 2$ ou 3 alors P est irréductible dans $\mathbb{k}[X]$.

† Décomposition en éléments simples

Exercice 3. Déterminer la décomposition en éléments simples de $P(X) = \frac{1}{(X^2-1)(X^2+1)^2}$ dans $\mathbb{C}[X], \mathbb{R}[X], \mathbb{F}_3[X]$ et $\mathbb{F}_2[X]$.

† Corps finis

Exercice 4 (Homomorphisme de Frobenius). Soit p un nombre premier. On considère un corps k de caractéristique p.

- 0. Soient $n, k \in \mathbb{N}^*$ avec $k \leq n$. Montrer que $k \binom{n}{k} = n \binom{n-1}{k-1}$.
- 1. Montrer que l'application suivante est un morphisme de corps

Frob:
$$\mathbb{k} \to \mathbb{k}$$

 $x \mapsto x^p$.

- 2. Rappeler pourquoi un morphisme de corps est toujours injectif.
- 3. En déduire que si k est fini, alors Frob est un automorphisme.
- 4. On suppose que $\mathbb{k} = \mathbb{F}_p$. Montrer que Frob est l'identité.

Exercice 5 (Les carrés dans \mathbb{F}_q). Soient p un nombre premier et $n \in \mathbb{N}^*$. On pose $q = p^n$. On s'intéresse aux carrés du corps fini \mathbb{F}_q . On considère l'ensemble suivant

$$\mathbb{F}_q^2 = \{ x \in \mathbb{F}_q \mid \exists y \in \mathbb{F}_q, x = y^2 \}.$$

- 1. En utilisant le morphisme de Frobenius, montrer que si p=2 alors $\mathbb{F}_q^2=\mathbb{F}_q$.
- 2. Soit p un nombre premier impair. Montrer que l'application $\varphi : \mathbb{F}_q^* \to \mathbb{F}_q^*$ envoyant x sur $x^{\frac{q-1}{2}}$ est un morphisme de groupes.
- 3. Montrer que Ker φ est donnée par les racines non nulles du polynôme $X^{\frac{q-1}{2}}-1$. En déduire que $|\operatorname{Ker} \varphi| \leqslant \frac{q-1}{2}$.
- 4. Montrer que l'application $\psi : \mathbb{F}_q^* \to \mathbb{F}_q^*$ envoyant x sur x^2 est un morphisme de groupes. Montrer que son image est inclue dans $\operatorname{Ker} \varphi$.
- 5. Montrer que $|\operatorname{Im}\psi| = \frac{q-1}{2}$. En déduire que $\operatorname{Ker}\varphi = \operatorname{Im}\psi$.
- 6. Montrer que $x \in \mathbb{F}_q^2 \setminus \{0\}$ si et seulement si $x^{\frac{q-1}{2}} = 1$.

Exercice 6. On considère $\mathbb{Z}[i]$, l'ensemble des nombres complexes de la forme a+ib avec $a,b\in\mathbb{Z}$. $\mathbb{Z}[i]$ est un anneau euclidien pour le stathme N défini par $N(a+ib)=a^2+b^2\in\mathbb{N}$. On rappelle un résultat démontré dans la feuille précédente. Pour un nombre premier $p\in\mathbb{N}$, les assertions suivantes sont équivalentes

- (a) p est réductible dans $\mathbb{Z}[i]$.
- (b) Il existe $\alpha \in \mathbb{Z}[i]$ tel que $N(\alpha) = p$ (indication : on remarquera que N(zz') = N(z)N(z')).
- (c) p s'écrit comme somme de deux carrés de nombres entiers.
- (d) p = 2 ou $p \equiv 1[4]$.
- 1. Montrer que les irréductibles de $\mathbb{Z}[i]$ sont (à multiplication par un inversible près)
 - les nombres premiers $p \in \mathbb{N}$ tels que $p \equiv 3[4]$,
 - les entiers de Gauss a+ib avec $N(a+ib)=a^2+b^2$ un nombre premier de N.
- 2. Décomposer les éléments suivants en facteurs irréductibles de $\mathbb{Z}[i]: 21, 13, 2+11i, -11+2i$.