TD 4 - ACTIONS DE GROUPES

Par défaut, on considère un groupe (G, *), dont on note e l'unité.

† Généralités

Exercice 1. 1. Montrer que l'on définit une action de groupe de \mathbb{Z}^2 sur \mathbb{R}^2 en considérant

$$\phi: \quad \mathbb{Z}^2 \times \mathbb{R}^2 \quad \to \quad \mathbb{R}^2$$

$$(Z, X) \quad \mapsto \quad Z + X.$$

- 2. Cette action est-elle transitive?
- 3. Dessiner l'orbite de $\binom{1}{2}$. Quels sont les éléments de \mathbb{R}^2 qui possède la même orbite?

Exercice 2. Soit $n \ge 1$ un entier.

- 1. Montrer que le groupe $\mathrm{GL}_n(\mathbb{k})$ agit sur \mathbb{k}^n par multiplication à gauche.
- 2. Montrer que les orbites sous cette action sont $\{0\}$ et $\mathbb{k}^n \setminus \{0\}$.
- 3. Déterminer le stabilisateur de $(1,0,\ldots,0) \in \mathbb{k}^n$ sous l'action de $\mathrm{GL}_n(\mathbb{k})$.
- 4. On pose n := 2. Soit

$$\mathscr{B} := \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \mid b \neq 0 \right\}.$$

Montrer que \mathscr{B} est un sous-groupe de $GL_2(\mathbb{k})$, et montrer que l'application $GL_2(\mathbb{k}) \to \mathbb{k}^2$, envoyant une matrice sur sa première colonne, induit une bijection entre $GL_2(\mathbb{k})/\mathscr{B}$ et \mathbb{k}^2 .

Exercice 3. Soit X un ensemble sur lequel G agit. Soient $x, y \in X$ deux éléments appartenant à la même orbite sous l'action de G. Montrer que $\operatorname{Stab}_G(x)$ et $\operatorname{Stab}_G(y)$ sont conjugués dans G.

Exercice 4. (Action par translation sur un quotient)

Soient G un groupe et H un sous-groupe de G.

- 1. Rappeler la définition de l'ensemble quotient G/H. Cet ensemble est-il un groupe?
- 2. Montrer que la formule $g' \star (gH) = (g'g)H$ définit une action du groupe G sur l'ensemble G/H (on montrera en particulier que \star est bien définie et ne dépend d'aucun choix).
- 3. Montrer que cette action est transitive.
- 4. Étant donné $q \in G$, déterminer le stabilisateur de l'élément $qH \in G/H$ sous cette action.
- 5. On suppose désormais que H est d'indice fini $n \ge 1$ dans G
 - (a) Montrer que l'action \star induit un morphismes de groupes $\varphi: G \to \mathfrak{S}_n$.
 - (b) Montrer que Ker $\varphi = \bigcap_{g \in G} gHg^{-1}$.
 - (c) Montrer que $\operatorname{Ker} \varphi$ est un sous-groupe d'indice fini de G.

† Groupes finis

Exercice 5. (Lemme de Cauchy)

Soit G un groupe fini et p un nombre premier divisant l'ordre de G. On considère l'ensemble

$$X := \{(g_1, \dots, g_p) \in G^p \mid g_1 \dots g_p = e\}$$

- 1. Montrer que X est de cardinal $|G|^{p-1}$.
- 2. Définir une action de $\mathbb{Z}/p\mathbb{Z}$ sur X.
- 3. Soit $x := (g_1, \ldots, g_p) \in X$, quels sont les cardinaux possibles de l'orbite de x sous l'action de $\mathbb{Z}/p\mathbb{Z}$.
- 4. Montrer qu'il existe au moins deux éléments $x_1, x_2 \in X$ dont les stabilisateurs sous l'action de $\mathbb{Z}/p\mathbb{Z}$ sont égaux à $\mathbb{Z}/p\mathbb{Z}$.
- 5. En déduire qu'il existe un élément $g \in G$ d'ordre p.

Exercice 6. Soit G un groupe d'ordre 15 agissant sur un ensemble X de cardinal 7. Montrer qu'il existe au moins un élément de X fixé par G.

Exercice 7. Soit G un groupe d'ordre $143 = 11 \times 13$ agissant sur un ensemble X de cardinal 108. Montrer qu'il existe au moins un élément de X fixé par G.

Groupes diédraux

Exercice 8. On rappelle que les isométries du plan complexe $\mathbb C$ sont les applications de la forme $r_{\zeta}: z \mapsto \zeta z$, et les applications de la forme $s_{\zeta}: z \mapsto \zeta \overline{z}$ (dans les deux cas, $|\zeta| = 1$). Les applications de la forme r_{ζ} sont appelées symétries.

- 1. Montrer que l'ensemble $Iso(\mathbb{C})$ forme un groupe pour la composition des applications.
- 2. Montrer que l'ordre de r_{ζ} dans Iso(\mathbb{C}) est égal à l'ordre de ζ dans \mathbb{C}^{\times} .
- 3. Montrer que l'ordre de s_{ζ} dans Iso(\mathbb{C}) est égal à 2.
- 4. Montrer que les rotations forment un sous-groupe de $Iso(\mathbb{C})$.
- 5. Montrer que le produit de deux symétries est égal soit à une rotation, soit à l'identité. En déduire que les rotations forment un sous-groupe d'indice 2 de $Iso(\mathbb{C})$.
- 6. En identifiant \mathbb{C} et \mathbb{R}^2 , calculer les matrices associées aux éléments de Iso (\mathbb{C}) .

Exercice 9. On considère le polygone régulier P_n du plan complexe \mathbb{C} dont les sommets sont donnés par l'ensemble $S := \{e^{i\frac{2k\pi}{n}} \mid 0 \le k \le n-1\}$. Dans cet exercice, on s'intéresse au groupe diédral D_n . Il s'agit du groupe des isométries du plan qui préserve P_n .

- 1. Montrer qu'il existe une action de D_n sur S. En déduire qu'il existe un morphisme de groupes $\varphi: D_n \to \mathfrak{S}_n$.
- 2. Soit $s \in S$, montrer qu'il existe $g \in D_n$ tel que g.1 = s. En déduire que l'action de D_n sur S est transitive.
- 3. Soit $g \in \bigcap_{s \in S} \operatorname{Stab}_{D_n}(s)$. Déterminer $\{g.1, g.e^{i\frac{2\pi}{n}}, g.e^{-i\frac{2\pi}{n}}\}$. En déduire que $g = \operatorname{Id}$ et que l'action est fidèle.
- 4. Déterminer $\operatorname{Stab}_{D_n}(1)$ et en déduire $|D_n|$.
- 5. On pose $\rho = r_{e^{i\frac{2\pi}{n}}}$. Montrer que $\langle \rho \rangle$ est un sous-groupe distingué de D_n .
- 6. Montrer que

$$D_n = \{ \rho^l, \rho^l \circ s_1 \mid l \in \{0, 1, \dots, n-1\} \}.$$

 \dagger Cas particulier du groupe \mathfrak{S}_4

Exercice 10. Soit k un corps. Montrer que \mathfrak{S}_4 agit sur $k[X_1, X_2, X_3, X_4]$ en permutant les variables :

$$\sigma.P(X, Y, Z, T) = P(X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}, X_{\sigma(4)})$$

- 1. Quel est le stabilisateur de $P = X_1X_2 + X_3X_4$ sous cette action?
- 2. Considérons le polynôme de Vandermonde $P_v := \prod_{i < j} (X_i X_j)$. Montrer que, pour tout $\sigma \in \mathfrak{S}_4$, $\sigma P_v = \pm P_v$. En déduire que $\sigma P_v = \varepsilon(\sigma) P_v$, où $\varepsilon(\sigma)$ désigne la signature de σ .