Feuille de TD 2 : premiers exemples

Exercice 1. 1. Donner une équation paramétrique et une équation cartésienne de la droite D passant par A(1, -2) et dirigée par le vecteur $\vec{u} = (1, 2)$.

2. Soit D la droite d'équation paramétrique:

$$\begin{cases} x(t) = 1 + 3t \\ y(t) = -1 + t \end{cases}$$

Donner une équation cartésienne de cette droite.

3. Soit D la droite d'équation cartésienne 2x+3y+1=0. Donner une équation paramétrique de cette droite.

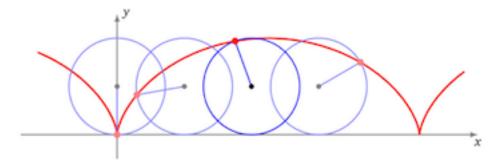
Exercice 2. Soit I =]a, b[un intervalle de \mathbb{R} et $f : I \to \mathbb{R}$ une fonction dérivable. On note $\Gamma := \{(t, f(t)) \mid t \in I\}$ le graphe de la fonction f.

1. Montrer qu'il existe $\gamma: I \to \mathbb{R}^2$ tel que Γ est l'**image** de γ .

On a montré que le graphe d'une fonction dérivable $f: I \to \mathbb{R}$ est une courbe paramétrée du plan.

- 2. Montrer que si f est de classe C^k , γ est de classe C^k .
- 3. Donner une paramétrisation de la parabole d'équation $y=x^2$.
- 4. Donner une paramétrisation (x(t), y(t)) de la courbe d'équation $y = \sqrt{-x^2 3x + 4}$.

Exercice 3. Soit $\eta : \mathbb{R} \to \mathbb{R}^2$ l'arc paramétré défini par $\gamma(t) = (\cos t + 3, \sin t)$ et soit \mathcal{C} la courbe paramétrée image de γ . Justifier que \mathcal{C} ne peut pas être décrite par une équation de la forme y = f(x).


Une courbe paramétrée n'est pas toujours le graphe d'une fonction $f: I \to \mathbb{R}$.

Exercice 4. Soit \mathscr{C} le cercle de centre (0,0) et de rayon 1.

- 1. Donner une paramétrisation γ de $\mathscr C$ à l'aide de fonctions trigonométriques.
- 2. Soit $\mathscr{C}' = \mathscr{C} \setminus \{0,1\}$. Montrer que \mathscr{C}' peut être paramétré par

$$\beta = \begin{cases} x(t) = \frac{1 - t^2}{1 + t^2} \\ y(t) = \frac{2t}{1 + t^2}. \end{cases}$$

Exercice 5 (Cycloïde). On étudie la courbe représentative du trajet d'un point, située sur une roue de rayon a > 0 qui roule sans glisser sur une droite.

Montrer que cette courbe peut être paramétrée par :

$$\gamma(t) = \begin{cases} x(t) = a(t - \sin(t)) \\ y(t) = a(1 - \cos(t)) \end{cases}$$