Rappels et exercices sur le groupe linéaire II

Pour pouvoir traiter de topologie, on se restreint à $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Groupes topologiques

Définition. Un *groupe topologique* est un groupe G muni d'une topologie, pour laquelle sont continues les applications produit et de passage à l'inverse :

Exercice 1. Montrer que \mathbb{C}^* est un groupe topologique, montrer que l'ensemble \mathbb{S}^1 des nombres complexes de module 1 en forme un sous-groupe.

Exercice 2. Soient G un groupe topologique et g un élément de G. Montrer que les applications de translations à gauche et à droite

$$L_g: G \longrightarrow G$$
 et $R_g: G \longrightarrow G$
 $h \longmapsto gh$ $h \longmapsto hg$

sont des homéomorphismes.

Exercice 3. Soient G un groupe topologique et H un sous-groupe de G.

- 1. Montrer que l'application inverse ι induit une bijection de l'ensemble des fermés qui contiennent H. En déduire que l'adhérence \overline{H} de H dans G est stable par inverse.
- 2. Montrer que \overline{H} est stable par produit (Indication : On rappelle que $x \in \overline{H}$ si et seulement si tout voisinage de x dans G intersecte H non trivialement).
- 3. Déduire que l'adhérence \overline{H} de H dans G est encore un sous-groupe de G.

Définition. Soient G un groupe topologique et X un espace topologique. On appelle **action continue** de G sur X une action $\alpha: G \times X \to X$ qui est une application continue.

On supposera dans la suite que G et X sont séparés. C'est par exemple le cas s'ils sont métriques.

Exercice 4. Soit $\alpha: G \times X \to X$ une action continue

- 1. Pour $x \in X$ on définit l'application $\alpha_x : G \to X$ par $g \mapsto \alpha(g, x) = g.x$. Montrer que pour tout x, α_x est continue.
- 2. Montrer que pour tout x, le stabilisateur $\operatorname{Stab}_G(x)$ de x dans G est fermé.
- 3. Soit $\mathcal{O} := \mathcal{O}_G(x)$ une G-orbite de X. Montrer que, pour tout y dans l'adhérence $\overline{\mathcal{O}}$ de \mathcal{O} et pour tout $g \in G$, $g.y \in \overline{\mathcal{O}}$. Autrement dit, l'adhérence d'une orbite est une réunion d'orbites.

Dans le cas classique d'une action d'un groupe G sur un ensemble X. On sait que, pour $x \in X$, on a une bijection (un isomorphisme de G-ensembles) entre $G/\operatorname{Stab}_G(x)$ et l'orbite $\mathcal{O}_G(x)$ de x dans X. Dans le cas d'une action continue, cette bijection est un homéomorphisme sous certaines hypothèses.

Théorème (H2G2 tome 1 ed.1, Théorème II.3.4.3). Soit G un groupe topologique agissant sur un espace X, et soit $x \in X$. On suppose que G est localement compact et dénombrable à l'infini (=union dénombrable de compact), et que $\mathcal{O}_G(x)$ est localement compact. Alors, pour $x \in X$, la bijection naturelle $G/\operatorname{Stab}_G(x) \to \mathcal{O}_G(x)$ est un homéomorphisme.

Comme les boules fermées sont compactes en dimension finie, l'espace $\mathcal{M}_n(\mathbb{K})$ est localement compact et dénombrable à l'infini. Il en va donc de même de $\mathrm{GL}_n(\mathbb{K})$, auquel on pourra essayer d'appliquer le théorème ci-dessus.

Sous de plus fortes hypothèses sur G, on peut se passer d'hypothèses sur X.

Proposition. Soit G un groupe topologique agissant sur un espace X, et soit $x \in X$. Si G est compact, alors la bijection naturelle $G/\operatorname{Stab}_G(x) \to \mathcal{O}_G(x)$ est un homéomorphisme.

Exercice 5. Soient G un groupe topologique et H un sous-groupe de G. On suppose que H et G/H sont des espaces connexes (G/H) est muni de la topologie quotient). Soit $f: G \to \{0,1\}$ une application continue.

- 1. Montrer que f est constante sur H. En déduire que f est constante sur toute classe à gauche gH modulo H.
- 2. Montrer qu'il existe une application $\overline{f}: G/H \to \{0,1\}$ telle que $\overline{f}(gH) = f(g)$ pour $g \in H$. Montrer que \overline{f} est continue. (Indication: la projection canonique $\pi: G \to G/H$ est une application ouverte).
- 3. En déduire que \overline{f} , puis f sont constantes. Conclure que G est connexe.

La conclusion de l'exercice précédent est vraie en remplaçant "connexe" par "compact". Mais la preuve est différente (cf [Mneimné-Testard, Chapitre 2 exercice 4]).

2 Groupes de matrices

Exercice 6. 1. Montrer que le déterminant est une application continue $GL_n(\mathbb{K}) \to \mathbb{K}^*$.

- 2. Montrer que $GL_n(\mathbb{K})$ forme un groupe topologique.
- 3. En considérant des matrices de la forme $A + \varepsilon B$, montrer que $\mathrm{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

Exercice 7. Soient $A, B \in GL_n(\mathbb{C})$.

- 1. Montrer que l'application $P: \mathbb{C} \to \mathbb{C}$ définie par $z \mapsto \det(zA + (1-z)B)$ est un polynôme non nul.
- 2. Montrer qu'il existe un chemin continu $\gamma:[0,1]\to\mathbb{C}$ telle que $\gamma(0)=0,\,\gamma(1)=1$ et pour tout $t\in[0,1]$, la matrice $\gamma(t)A+(1-\gamma(t))B$ est inversible. (Indication: l'ensemble \mathbb{C} privé d'un nombre fini de point est connexe par arc).
- 3. En déduire que $GL_n(\mathbb{C})$ est connexe par arc.
- 4. Montrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe (on utilisera que \mathbb{R}^* n'est pas connexe).

Définition. On a déjà vu la définition de $SL_n(\mathbb{K})$. On considérera aussi d'autres sous-groupes remarquables de $GL_n(\mathbb{K})$:

Groupe orthogonal : $O_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) \mid {}^tA = A^{-1}\}$ Groupe unitaire : $U_n(\mathbb{C}) = \{A \in GL_n(\mathbb{C}) \mid A^* = A^{-1}\}$

Groupe spécial orthogonal : $SO_n(\mathbb{K}) = O_n(\mathbb{K}) \cap SL_n(\mathbb{K})$ Groupe spécial unitaire : $U_n(\mathbb{C}) = U_n(\mathbb{C}) \cap SL_n(\mathbb{C})$

Exercice 8. 1. Montrer que l'ensemble $\{(a,b) \in \mathbb{C}^2 \mid a^2 + b^2 = 1\}$ n'est pas borné. En déduire que $O_2(\mathbb{C})$ et $SO_2(\mathbb{C})$ ne sont pas compact.

2. Montrer que $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sont compacts.

3. Montrer que $SO_n(\mathbb{R})$ est connexe par arcs (Indication : on pourra utiliser la réduction des matrices orthogonales).

Remarque : On peut montrer de même que $U_n(\mathbb{C})$ est compact. Il est également connexe par arcs.

Exercice 9. On considère deux matrices A, B, on cherche à montrer que $\chi_{AB} = \chi_{BA}$.

- 1. On suppose A inversible. Montrer que pour tout $\lambda \in \mathbb{K}$, on a $\chi_{AB}(\lambda) = \chi_{BA}(\lambda)$. En déduire que $\chi_{AB} = \chi_{BA}$. (On pourra montrer que AB et BA sont conjuguées)
- 2. On pose $\mathbb{K}_n[\lambda]$ l'espace vectoriel des polynômes sur \mathbb{K} de degré au plus n. Montrer que l'application $A \mapsto \chi_A$ allant de $\mathcal{M}_n(\mathbb{K})$ vers $\mathbb{K}_n[\lambda]$ est continue.
- 3. En déduire que, pour tout couple de matrices A, B, on a $\chi_{AB} = \chi_{BA}$ (Indication : on utilisera la densité de $GL_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})$).
- 4. En déduire que, pour tout $A, B \in \mathcal{M}_n(\mathbb{K})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Exercice 10. (Densité des matrices diagonalisables dans les matrices trigonalisables)

On pose $\mathcal{M}_n^{\mathrm{reg}}(\mathbb{K})$ l'ensemble des matrices $n \times n$ ayant n valeurs propres distinctes et $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrice $n \times n$ diagonalisables. On rappelle que $\mathcal{M}_n^{\mathrm{reg}}(\mathbb{K}) \subset \mathcal{D}_n(\mathbb{K})$.

- 1. Soit T une matrice triangulaire supérieure et $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de T. Construire, pour tout k > 0 une matrice diagonale D_k dont les coefficients diagonaux sont inférieurs à 2^{-k} et telle que $T + D_k \in \mathcal{M}_n^{-\text{reg}}(\mathbb{K})$.
- 2. En déduire que toute matrice trigonalisable est limite de matrices de $\mathcal{M}_n^{\text{reg}}(\mathbb{K})$.
- 3. En déduire que $\mathcal{D}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 11. (Cayley-Hamilton)

- 1. Soit D une matrice diagonale à valeurs propres distinctes. Montrer que $\chi_D(D) = 0$.
- 2. En déduire que, pour $A \in \mathcal{M}_n^{\text{reg}}(\mathbb{C})$, on a $\chi_A(A) = 0$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{C})$, montrer que l'application $\mathbb{K}_n[\lambda] \mapsto \mathcal{M}_n(\mathbb{C})$ envoyant P sur P(A) est continue, en déduire que $A \mapsto \chi_A(A)$ est continue (*Indication*: on pourra utiliser la question 2 de l'exercice ??).
- 4. Conclure que $\chi_A(A) = 0$ pour tout $A \in \mathcal{M}_n(\mathbb{C})$.

ALERTE: Cette preuve ne fonctionne en l'état que pour un sous-corps de \mathbb{C} .

Exercice 12. (Connexité de $SL_n(\mathbb{K})$)

1. On reprend les notations de la première feuille concernant les transvections. Montrer que la matrice

$$\begin{pmatrix} I_{n-2} & 0 \\ 0 & T \end{pmatrix}$$

Est dans la composante connexe par arcs de I_n dans $\mathrm{SL}_n(\mathbb{K})$.

- 2. Montrer que toute transvection est dans la composante connexe par arcs de l'identité dans $\mathrm{SL}_n(\mathbb{K})$.
- 3. En déduire que $SL_n(\mathbb{K})$ est connexe par arcs.
- 4. Déduire de l'exercice précédent une nouvelle preuve que $GL_n(\mathbb{C})$ est connexe.
- 5. On pose $GL_n^+(\mathbb{R})$ (resp. $GL_n^-(\mathbb{R})$) l'ensemble des matrices à déterminant strictement positif (resp. strictement négatif). Montrer que l'on a une suite exacte courte

$$1 \to \operatorname{SL}_n(\mathbb{R}) \to \operatorname{GL}_n^+(\mathbb{R}) \to \mathbb{R}_+^* \to 1$$

En déduire que les composantes connexes de $\mathrm{GL}_n(\mathbb{R})$ sont $\mathrm{GL}_n^+(\mathbb{R})$ et $\mathrm{GL}_n^-(\mathbb{R})$ (Indication : on pourra utiliser l'exercice ??).

Exercice 13. (Sous-groupes à un paramètre de $GL_n(\mathbb{C})$)

Soit $f:(\mathbb{R},+)\to \mathrm{GL}_n(\mathbb{C})$ un morphisme de groupes continu. Pour $i,j\in[1,n]$, on note $f_{i,j}:\mathbb{R}\to\mathbb{C}$ la fonction coordonnée (i,j) de f.

- 1. Expliciter l'assertion "f est un morphisme de groupes" à l'aide des fonctions $f_{i,j}$.
- 2. Pour deux réels a, b, on définit $\int_a^b f(s)ds$ comme la matrice dont la coordonnée i, j est $\int_a^b f_{i,j}(s)ds$. Soit $\alpha > 0$. Vérifier que l'on a, pour tout réel t,

$$\left(\int_0^\alpha f(s)ds\right)f(t) = \int_t^{t+\alpha} f(s)ds$$

3. Montrer que, quand α tends vers 0, la valeur moyenne de f sur $[0, \alpha]$, i.e.

$$\frac{1}{\alpha} \int_0^{\alpha} f(s) ds$$

converge vers $f(0) \in GL_n(\mathbb{C})$. En déduire que pour α assez petit, la valeur moyenne de f sur $[0, \alpha]$ est une matrice inversible.

4. Montrer que, pour $\alpha > 0$, la fonction

$$t \mapsto \frac{1}{\alpha} \int_{t}^{t+\alpha} f(s) ds$$

est dérivable en 0. En déduire que f est dérivable sur \mathbb{R} , et que f'(t) = f'(0)f(t) pour tout réel t.

- 5. Conclure que $f(t) = \exp(tf'(0))$ pour tout réel t.
- 6. Réciproquement, montrer que toute matrice $M \in \mathcal{M}_n(\mathbb{C})$ induit un sous-groupe à un paramètre $t \mapsto \exp(tM)$.

3 Topologie de quelques actions classiques

Exercice 14. Montrer que l'action de $GL_n(\mathbb{K})$ sur \mathbb{K}^n est continue. Quelles sont les orbites? Expliciter les résultats de l'exercice?? dans ce contexte.

Exercice 15. On considère $G := \mathrm{GL}_2(\mathbb{K})$. On pose $B \subset G$ l'ensemble des matrices triangulaires supérieures dans G.

1. Le groupe B est-il distingué dans G?

On rappelle que G agit sur $\mathbb{P}^1(\mathbb{K})$ continument et transitivement par

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . [x:y] := [ax + by : cx + dy]$$

- 2. Montrer que B est le stabilisateur de [1:0] pour cette action. En déduire un homéomorphisme $G/B \simeq \mathbb{P}^1(\mathbb{K})$.
- 3. Décrire l'action de B sur $\mathbb{P}^1(\mathbb{K})$. Quelles sont les orbites? Expliciter les résultats de l'exercice ?? dans ce contexte.
- 4. Que se passe-t-il si l'on remplace B par l'ensemble des matrices triangulaires inférieures de G dans la question précédente?

Exercice 16. (Théorème du rang) On pose $G_1 := GL_m(\mathbb{K}), G_2 = GL_n(\mathbb{K}), X = \mathcal{M}_{m,n}(\mathbb{K}).$

1. Montrer que $G_1 \times G_2$ agit continument sur X par

$$(g,h).M := gMh^{-1}.$$

On appelle cette action l'action par $\acute{e}quivalence$. Deux matrices de X se trouvant dans la même orbite sont dites $\acute{e}quivalentes$.

- 2. Soit $M \in X$. Montrer que pour toute matrice $N \in X$ équivalente à M, on a rg(N) = rg(M).
- 3. Montrer que toute matrice $M \in X$ est équivalente à une unique matrice de la forme

$$M_k = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$$

avec $\operatorname{rg}(M) = k \leqslant m, n$. On pose \mathcal{O}_k l'orbite de M_k .

- 4. Montrer que pour $k \leq k' \leq m, n$, la matrice M_k est dans l'adhérence de $\mathcal{O}_{k'}$.
- 5. En déduire que

$$\forall k_0 \leqslant m, n, \ \overline{\mathcal{O}_{k_0}} = \bigcup_{k \leqslant k_0} \mathcal{O}_k.$$

6. Montrer que \mathcal{O}_0 est la seule orbite fermée, et que $\mathcal{O}_{\min(m,n)}$ est la seule orbite ouverte. Si m=n, à quoi sont égales \mathcal{O}_0 et $\mathcal{O}_{\min(m,n)}$.

On peut faire un travail comparable en considérant l'action de $GL_n(\mathbb{K})$ sur $\mathcal{M}_n(\mathbb{K})$ par conjugaison [H2G2 tome 1 ed.1, Sections III.1 III.2 III.3]. Cette action traduit le changement de base et est un bon contexte pour formuler la réduction des endomorphismes. On a alors

Théorème. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on pose \mathcal{O}_A la classe de similitude de A. On a

- A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ si et seulement si \mathcal{O}_A est fermée.
- A est nilpotente si et seulement si la matrice nulle est dans $\overline{\mathcal{O}_A}$.

Exercice 17. (Correspondance de Klein) On considère le R-espace vectoriel

$$E = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid \operatorname{tr}(M) = 0 \}.$$

- 1. Montrer que E est de dimension 3. Montrer que $\det : E \to \mathbb{R}$ est une forme quadratique.
- 2. Montrer que la famille

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

est une base de E, orthogonale pour det. En déduire la signature de det comme forme quadratique sur E.

3. On considère le groupe $G := \mathrm{SL}_2(\mathbb{R})$. Montrer que G agit sur E par

$$\forall g \in G, M \in E, \ g.M := gMg^{-1}.$$

On note $\varphi: G \to \mathfrak{S}(E)$ le morphisme de groupe associé à cette action.

- 4. Montrer que $\operatorname{Ker} \varphi = \{ \pm I_2 \}$.
- 5. Montrer que φ est en fait à valeurs dans le groupe orthogonal $O(\det) \subset GL(E)$. En déduire que φ est à valeurs dans la composante connexe $O_0(\det)$ de Id_E dans $O(\det)$.
- 6. On admet que la différentielle $d\varphi_{I_2}$ est une bijection. En déduire que $\varphi(\operatorname{SL}_2(\mathbb{R}))$ contient un ouvert contenant Id_E , ainsi qu'un fermé contenant Id_E .
- 7. En déduire que $\varphi(SL_2(\mathbb{R}))$ est ouvert et fermé. En déduire que $\varphi(SL_2(\mathbb{R})) = O_0(\det)$.
- 8. En déduire un homéomorphisme $PSL_2(\mathbb{R}) \simeq O_0(\det)$.

On peut montrer par ailleurs que $O_0(\det)$ est isomorphe à $SO_2(\mathbb{R}) \times \mathbb{R}^2$ ([H2G2 tome 1 ed.1, Proposition VI.A.2]), et ainsi déduire certaines propriétés topologiques de $SO_2(\mathbb{R})$.

On peut montrer (cf. exercice ??) que $\mathrm{SL}_2(\mathbb{R})$ est un groupe de Lie. L'espace tangent en l'identité T_{I_2} $\mathrm{SL}_2(\mathbb{R})$ étant égal à E. L'action de $\mathrm{SL}_2(\mathbb{R})$ sur E est donc une affaire de groupe de Lie,

Corollaire (H2G2 tome 1 ed.1, Exercice IX.2.2). [Perrin Théoreme 3.2] Avec le même type d'arguments, on obtient des homéomorphismes de groupes

$$\mathrm{PSL}_2(\mathbb{C}) \simeq \mathrm{SO}_3(\mathbb{C}), \ \mathrm{PSU}_2(\mathbb{C}) \simeq \mathrm{SO}_3(\mathbb{R}), \ \mathrm{PSO}_4(\mathbb{R}) \simeq \mathrm{SO}_3(\mathbb{R})^2$$

On peut en déduire que $PSO_4(\mathbb{R})$ est le seul $PSO_n(\mathbb{R})$ non simple.

4 Groupes de Lie

On a étudié GL_n et ses sous-groupes comme des groupes topologiques, mais en fait il y a mieux : une structure de (sous-)variété. Comme pour les groupes topologiques, un groupe de Lie est un groupe muni d'une structure de variété différentielle pour laquelle le produit et le passage à l'inverse sont \mathcal{C}^{∞} .

Exercice 18. $(GL_n(\mathbb{R}) \text{ et } GL_n(\mathbb{C}) \text{ comme groupes de Lie})$

- 1. Rappeler la dimension de $\mathcal{M}_n(\mathbb{C})$ comme \mathbb{R} -espace vectoriel.
- 2. Montrer que $GL_n(\mathbb{R})$ et $GL_n(\mathbb{C})$ sont des sous-variétés de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$ respectivement. Quelles sont leurs dimensions?
- 3. Quel est l'espace tangent en l'identité de $\mathrm{GL}_n(\mathbb{R})$? Même question pour $\mathrm{GL}_n(\mathbb{C})$?
- 4. Montrer que le produit et le passage à l'inverse sont en fait des applications \mathcal{C}^{∞} dans GL_n .

Exercice 19. ($\mathrm{SL}_n(\mathbb{R})$ comme groupe de Lie)

On rappelle que, pour $A \in \mathcal{M}_n(\mathbb{R})$, ou $A \in \mathcal{M}_n(\mathbb{C})$, la différentielle du déterminant en A est donnée par $H \mapsto \operatorname{tr}({}^t\operatorname{com}(A)H)$, où ${}^t\operatorname{com}(A)$ est la transposée de la comatrice de A.

- 1. Montrer que det est une submersion de $GL_n(\mathbb{R})$ vers \mathbb{R}^* . En déduire que $SL_n(\mathbb{R})$ est une sous-variété de $GL_n(\mathbb{R})$. Quelle est sa dimension? Quel est l'espace tangent $\mathfrak{sl}_n(\mathbb{R})$ de $SL_n(\mathbb{R})$ en I_n ?
- 2. Soit $M \in \mathcal{M}_n(\mathbb{R})$, montrer que $\det(\exp(M)) = e^{\operatorname{tr}(M)}$.
- 3. Soit $f: \mathbb{R} \to \mathrm{GL}_n(\mathbb{R})$ un sous-groupe à un paramètre donné par une matrice $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que f est à valeur dans $\mathrm{SL}_n(\mathbb{R})$ si et seulement si $M \in \mathfrak{sl}_n(\mathbb{R})$.

Exercice 20. $(O_n(\mathbb{R}) \text{ et } SO_n(\mathbb{R}) \text{ comme groupes de Lie})$

On considère l'application $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $M \mapsto {}^t M M$.

- 1. Montrer que f est à valeurs dans l'ensemble $S_n(\mathbb{R})$ des matrices symétriques réelles d'ordre n.
- 2. Montrer que la différentielle de f en une matrice X_0 est donnée par $df_{X_0}: M \mapsto {}^tX_0M + {}^tMX_0$. En déduire que f restreinte à $O_n(\mathbb{R})$ est une submersion.
- 3. Montrer que $O_n(\mathbb{R})$ est une sous-variété de dimension $\frac{n(n-1)}{2}$ de $\mathcal{M}_n(\mathbb{R})$.
- 4. En déduire que $SO_n(\mathbb{R})$ est également une sous-variété de dimension $\frac{n(n-1)}{2}$ de $\mathcal{M}_n(\mathbb{R})$, et que les espaces tangents à I_n dans $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sont égaux. On note $\mathfrak{so}_n(\mathbb{R})$ cet espace.
- 5. Montrer que $\mathfrak{so}_n(\mathbb{R})$ est l'espace des matrices antisymétriques.
- 6. Soit $f: \mathbb{R} \to \mathrm{GL}_n(\mathbb{R})$ un sous-groupe à un paramètre donné par une matrice $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que f est à valeur dans $\mathrm{SO}_n(\mathbb{R})$ si $M \in \mathfrak{so}_n(\mathbb{R})$.

On termine par quelques autres résultats sur les groupes de Lie, pour la culture.

Théorème. (Von Neumann 1929, Cartan 1930, [Mneimné Testard, Section 3.4]) Tout sous-groupe fermé de $GL_n(\mathbb{K})$ (pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est un groupe de Lie.

Théorème (H2G2 tome 1 ed.1, Théorème IX.B.10). Si $G \subset GL_n(\mathbb{C})$ est un sous-groupe fermé, l'espace tangent à G en l'identité est donné par

$$\mathfrak{g} = \{ M \in \mathrm{GL}_n(\mathbb{C}) \mid \exp(tM) \in H \ \forall t \in \mathbb{R} \}.$$

Soit $G \subset GL_n(\mathbb{K})$ un sous-groupe fermé (ou plus généralement, un groupe de Lie). On pose \mathfrak{g} l'espace tangent à G en l'identité.

Pour $g \in G$, la conjugaison par g fournit un automorphisme de groupe de Lie $\mathrm{Ad}_g : G \to G$. La différentielle de Ad_g en l'identité fournit une application linéaire $\mathrm{ad}_g : \mathfrak{g} \to \mathfrak{g}$. On peut alors montrer que $\mathrm{ad} : g \mapsto \mathrm{ad}_g$ donne un morphisme de groupe $G \to \mathrm{GL}(\mathfrak{g})$.

Dans le cas où G est un sous-groupe fermé de $\mathrm{GL}_n(\mathbb{K})$, on montre facilement que l'on a

$$\forall g \in G, x \in \mathfrak{g}, \ \mathrm{ad}_g(x) = gxg^{-1} \in \mathfrak{g}$$

Le morphisme ad est le morphisme que nous avons utilisé dans l'exercice ?? dans le cas $SL_2(\mathbb{R})$.