Rappels et exercices sur les espaces euclidiens et hermitiens

1 Espaces préhilbertiens, espaces euclidiens

1.1 Définitions

On considère un espace vectoriel E de dimension finie n sur \mathbb{R}

Definition 1.1. On dit qu'une forme bilinéaire symétrique φ sur E est

- **positive** si $\varphi(x,x) \ge 0$ pour x dans E.
- **définie** si pour tout $x \in E$, $\varphi(x,x) = 0 \Leftrightarrow x = 0$

On appelle $produit \ scalaire \ sur \ E$ toute forme bilinéaire symétrique définie positive.

Exercice 1. On pose u := (x, y, z) et u' := (x', y', z') dans \mathbb{R}^3 . Les applications suivantes définissent-elles un produit scalaire sur \mathbb{R}^3 ?

- 1) $\varphi_1(u, u') = xx' + 2yy' + 4zz'$
- 2) $\varphi_2(u, u') = xx' + 2xy' + 2x'y + yy' + 4zz'$
- 3) $\varphi_3(u, u') = xx' + 6yy' + azz' 2x'y 2xy' 3xz' 3x'z \text{ avec } a \in \mathbb{R}.$

Example 1.2. L'espace vectoriel \mathbb{R}^n étant muni de sa base canonique $(e_i)_{i \in [\![1,n]\!]}$, l'application $(x,y) \mapsto \langle x,y \rangle := \sum_{k=1}^n x_k y_k$ définit un produit scalaire sur \mathbb{R}^n . On dit que c'est le produit scalaire usuel de \mathbb{R}^n .

Definition 1.3. Un \mathbb{R} -espace vectoriel muni d'un produit scalaire est dit $pr\'{e}hilbertien$. Un espace pr\'ehilbertien de dimension finie est dit euclidien.

Exercice 2. (Cauchy-Schwarz)

Soit (E,φ) un espace préhilbertien.

1. Montrer que pour tous $x, y \in E$, on a :

$$|\varphi(x,y)| \leqslant \sqrt{\varphi(x,x)} \sqrt{\varphi(y,y)}$$

2. Montrer que l'égalité du 1) est réalisée si et seulement si x et y sont colinéaires.

Example 1.4. 1. Dans le \mathbb{R} -espace vectoriel \mathbb{C} , $\varphi(z,z') := \operatorname{Re}(\overline{z}z')$ est un produit scalaire, on a $\varphi(z,z) = |z|^2$. Si on pose z = a + ib et z' = a' + ib' les formes algébriques de z et z', l'inégalité de Cauchy-Schwarz s'écrit

$$|aa + bb'| \le \sqrt{a^2 + b^2} \sqrt{a'^2 + b'^2}$$

Application : pour tous x, y, θ , on a $x \cos(\theta) + y \sin(\theta) \leqslant \sqrt{x^2 + y^2}$

2. Dans \mathbb{R}^n muni du produit scalaire usuel, on a :

$$\forall x, y \in \mathbb{R}^n, \ \left| \sum_{i=1}^n x_i y_i \right|^2 \leqslant \left(\sum_{i=1}^n x_i^2 \right) \left(\sum_{i=1}^n y_i^2 \right)$$

Le produit scalaire de deux vecteurs x et y sera désormais noté $\langle x, y \rangle$

Théorème 1.5. Soit E un espace préhilbertien. L'application de E vers \mathbb{R}_+ définie par

$$x\mapsto \|x\|:=\sqrt{\langle x,x\rangle}$$

Est une norme sur E, que l'on appelle norme euclidienne

1.2 Bases orthonormées, projections orthogonales

Definition 1.6. On dit que deux vecteurs $x, y \in E$ sont **orthogonaux** si $\langle x, y \rangle = 0$. On note alors $x \perp y$.

Definition 1.7. Une famille $(e_i)_{i \in I}$ de E est dite **orthogonales** si les e_i sont orthogonaux deux à deux. Si de plus on a $||e_i|| = 1$ pour tout $i \in I$, on dit que la famille (e_i) est **orthonormée** (ou orthonormale).

Definition 1.8. L'orthogonal d'une partie non vide X de E est l'ensemble :

$$X^{\perp} := \{ y \in E \mid \forall x \in X, \langle x, y \rangle = 0 \}$$

Il est facile de vérifier que X^{\perp} est un sous-espace vectoriel de E.

Exercice 3.

- 1. On appelle **projection orthogonale** sur F la projection $p_F: E \to E$ sur F parallèlement à F^{\perp} . Pour tout vecteur $u \in E$, $p_F(u)$ est appelé **projeté orthogonal** de u sur F. Ainsi, $p_F(u)$ est un élément de F tel que $u p_F(u) \in F^{\perp}$.
 - a) Justifier l'égalité $||p_F(u)||^2 + ||u p_F(u)||^2 = ||u||^2$.
 - b) En déduire que $||p_F(u)|| \le ||u||$, avec égalité si et seulement si $u \in F$.
 - c) Démontrer que pour tous $u, v \in E, \langle p_F(u), v \rangle = \langle u, p_F(v) \rangle$.
 - d) Donner la matrice de p_F dans une base orthogonale de E adaptée à F.
 - e) Montrer que la distance de u à F vérifie $d(u,F) = ||u p_F(u)||$ (cela revient à montrer que pour tout $v \in F$, $||u v|| \ge ||u p_F(u)||$).
- 2. Application : détermination de la droite de régression linéaire d'un nuage de point. On considère n points $\{A_i(x_i, y_i)\}_{i \in [\![1, n]\!]}$ dans \mathbb{R}^2 et on recherche une droite de \mathbb{R}^2 d'équation y = ax + b qui soit la plus proche possible des points A_i . On cherche à minimiser la distribution des écarts $y_i (ax_i + b)$ au sens suivant : trouver a et b afin de minimiser la quantité

$$\sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

On considère les vecteurs $\underline{x} = (x_1, \dots, x_n)$, $\underline{y} = (y_1, \dots, y_n)$ et $\underline{1} = (1, \dots, 1)$ de \mathbb{R}^n et f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^n définie par $f(a, b) = a\underline{x} + b\underline{1}$.

- a) Montrer que le problème consiste à déterminer (a,b) tel que ||f(a,b)-y|| soit minimal.
- b) Montrer que le couple (a, b) recherché vérifie :

$$\begin{cases} a \langle \underline{x}, \underline{x} \rangle + b \langle \underline{1}, \underline{x} \rangle = \langle \underline{x}, \underline{y} \rangle \\ a \langle \underline{1}, \underline{x} \rangle + b \langle \underline{1}, \underline{1} \rangle = \langle \underline{1}, \underline{y} \rangle \end{cases}$$

c) Résoudre le système précédent puis vérifier que

$$a = \frac{n\sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n\sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} = \frac{n\left\langle \underline{x}, \underline{y} \right\rangle - \left\langle \underline{x}, \underline{1} \right\rangle \left\langle \underline{y}, \underline{1} \right\rangle}{n\left\langle \underline{x}, \underline{x} \right\rangle - \left\langle \underline{x}, \underline{1} \right\rangle^2}$$

et

$$b = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\left\langle\underline{x},\underline{x}\right\rangle\left\langle\underline{y},\underline{1}\right\rangle - \left\langle\underline{x},\underline{1}\right\rangle\left\langle\underline{x},\underline{y}\right\rangle}{n\left\langle\underline{x},\underline{x}\right\rangle - \left\langle\underline{x},\underline{1}\right\rangle^{2}}$$

Exercice 4. (MG 2020) Soient (b_1, \ldots, b_d) une famille de d vecteurs linéairement indépendants de \mathbb{R}^n .

- 1. On se propose de démontrer qu'il existe une famille de d vecteurs (b_1^*,\ldots,b_d^*) vérifiant les propriétés :
 - (P1) $b_1^* = b_1$.
 - (P2) Pour $i \in [2, d]$, $b_i^* = b_i \sum_{j < i} \mu_{i,j} b_j^*$ avec pour tout $j \in [1, i 1]$, $\mu_{i,j} = \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle}$
 - (P3) $\langle b_i^*, b_i^* \rangle = 0$ pour tous i, j dans [1, d] tels que $i \neq j$.
 - a) Soient $(b_1^\#, \dots, b_d^\#)$ des vecteurs de \mathbb{R}^n tels que $b_1^\# = b_1$ et, pour tout $i \in [\![2,d]\!]$, il existe des nombres réels $(a_{i,j})_{1 \leqslant j \leqslant i}$ tels que $b_i^\# = b_i \sum_{j < i} a_{i,j} b_j^\#$. Démontrer que, pour tout i dans $[\![1,d]\!]$, $\operatorname{Vect}(b_1, \dots, b_i) = \operatorname{Vect}(b_1^\#, \dots, b_i^\#)$ et en déduire que $b_i^\#$ est non nul.
 - b) Construire par récurrence une famille de d vecteurs (b_1^*, \ldots, b_d^*) vérifiant les propriétés (P1) et (P2).

c) Démontrer que la famille de vecteurs ainsi construite vérifie la propriété (P3).

On note B la matrice de $\mathcal{M}_{n,d}(\mathbb{R})$ dont les colonnes sont les vecteurs b_1,\ldots,b_d dans cet ordre.

- 2. Montrer que $\prod_{i=1}^{d} ||b_i^*||_2 = (\det{}^t BB)^{1/2}$.
- 3. En déduire que, si $d=n,\, |\det B|\leqslant \prod_{i=1}^d \|b_i\|_2.$

La question 1 de l'exercice précédent est la *procédure d'orthogonalisation de Gram-Schmidt*. C'est un moyen de construire des bases orthonormées pour tout produit scalaire (une fois qu'on a une famille orthogonale, il suffit de renormaliser pour en avoir une orthonormée).

Exercice 5.

- 1. Sur \mathbb{R}^3 muni du produit scalaire usuel, soit p_F la projection orthogonale sur le plan F d'équation x-2y+z=0. Écrire la matrice de p_F dans la base canonique.
- 2. Soit $\mathcal{B} := (v_1, v_2, v_3)$, avec

$$\begin{cases} v_1 = (1, 0, 1) \\ v_2 = (2, 1, 0) \\ v_3 = (1, 1, 1) \end{cases}$$

Vérifier que \mathcal{B} est une base de \mathbb{R}^3 . S'agit-il d'une base orthonormée? Utiliser le procédé de Gram-Schmidt sur \mathcal{B} pour construire une base orthonormée $\mathcal{B}' := (e_1, e_2, e_3)$.

3. Soit $\mathcal{B} := (v_1, v_2, v_3)$, avec

$$\begin{cases} v_1 = (1, 0, 1) \\ v_2 = (2, 1, 2) \\ v_3 = (1, 1, 1) \end{cases}$$

En appliquant le procédé de Gram-Schmidt sur \mathcal{B} , trouver la dimension de $F = \text{Vect}(v_1, v_2, v_3)$ ainsi qu'une base orthonormée de F.

Exercice 6. Soit E un espace euclidien et soit $S=(u_1,\ldots,u_p)$ une famille de vecteurs de E. On appelle **déterminant** de **Gram** de la famille S le déterminant G(S) de la matrice carrée $(\langle u_i,u_j\rangle)_{i,j\in[1,p]}$.

- 1. On suppose que S est orthogonale. Calculer G(S) en fonction des $||u_i||$.
- 2. Montrer que G(S) ne change pas si on ajoute à l'un des vecteurs de S une combinaison linéaire des autres vecteurs de S.
- 3. On construit à partir de S une famille orthogonale $S = (u'_1, \dots, u'_p)$ par orthogonalisation de Gram-Schmidt. Montrer que G(S') = G(S).
- 4. On suppose que les u_i sont libres. Soit u un vecteur de E et $T=(u_1,\ldots,u_p,u)$. Montrer que $d(u,\operatorname{Vect}(S))^2=\frac{G(T)}{G(S)}$.
- 5. Soit $S = (u_1, \ldots, u_p)$ une famille de vecteurs non nuls de E
 - a) Montrer que $G(S) > 0 \Leftrightarrow G(S) \neq 0 \Leftrightarrow S$ est libre. Que retrouve-t-on pour p = 2.
 - b) Montrer que $G(S) \leq \|u_1\|^2 \cdots \|u_p\|^2$, l'égailté n'ayant lieu que si les vecteurs sont deux à deux orthogonaux.

1.3 Endomorphisme orthogonal ou isométrie vectorielle

Soit $(E, \|.\|)$ un espace vectoriel euclidien de dimension n.

Definition 1.9. Une *isométrie vectorielle* (ou un endomorphisme orthogonal) de E est un endomorphisme u de E tel que :

$$\forall x \in E, \ \|u(x)\| = \|x\|$$

On note O(E) l'ensemble des isométries vectorielles de E.

Definition 1.10. Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite *orthogonale* si ${}^tAA = I_n$. On note $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$

Exercice 7. Soit (E,φ) un espace euclidien de dimension n. Montrer qu'il existe un isomorphisme $f:E\to\mathbb{R}^n$ tel que

$$\forall x, y \in E, \varphi(x, y) = \langle f(x), f(y) \rangle$$

En déduire que O(E) est isomorphe à $O_n(\mathbb{R})$.

Exercice 8. On considère une application $f: E \to E$ telle que f(0) = 0 qui conserve les distances (i.e $\forall x, y \in E, ||f(x) - f(y)|| = ||x - y||$).

- 1. Montrer que f conserve la norme, puis le produit scalaire.
- 2. Soient $\lambda, \mu \in \mathbb{R}$ et $x, y \in E$. On pose $z = f(\lambda x + \mu y) \lambda f(x) \mu f(y)$. Calculer $\langle z, f(t) \rangle$ pour tout $t \in E$, puis $\langle z, z \rangle$. En déduire que f est linéaire (f est donc une isométrie vectorielle).

Exercice 9. Soit $f \in O(E)$. On veut montrer qu'il existe une base orthonormée de E dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} I_s & & & & \\ & -I_t & & & \\ & & R(\theta_1) & & \\ & & & \ddots & \\ & & & & R(\theta_k) \end{pmatrix} \quad \text{où} \quad R(\theta) := \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

- 1. a) Montrer que si le polynôme caractéristique de f admet une racine réelle, alors il existe une droite vectorielle de E qui est stable par f.
 - b) On suppose que le polynôme caractéristique de f n'admet pas de racine réelle. Soit \mathcal{B} une base de E et A la matrice de f dans cette base. On peut considérer A comme un élément de $\mathcal{M}_n(\mathbb{C})$. Soit λ une valeur propre (complexe) de A et Z un vecteur propre associé. On écrit Z = U + iV où U et V sont des vecteur colonne réels. Montrer que les vecteurs AU et AV sont combinaisons linéaires réelles de U et V.
 - c) En déduire qu'il existe un sous-espace de E de dimension 1 ou 2 qui est stable.
- 2. Montrer que si un sous-espace F de E est stable par f alors F^{\perp} l'est aussi.
- 3. On suppose n=2.
 - a) Montrer que si $\det(f) = 1$, alors il existe $\theta \in \mathbb{R}$ tel que dans toute base orthonormée de E la matrice de f est $R(\theta)$.
 - b) Montrer que si $\det(f) = -1$ alors il existe une base orthonormée de E dans laquelle la matrice de f est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 4. Montrer le résultat par récurrence sur n.

1.4 Endomorphisme adjoint, endomorphisme symétrique

Exercice 10. Soit E un espace euclidien et f un endomorphisme de E.

- 1. Montrer qu'il existe un unique endomorphisme f^* , appelé **adjoint** de f, tel que pour tous $u, v \in E$, on ait $\langle f(u), v \rangle = \langle u, f^*(v) \rangle$.
- 2. Montrer que si B est une base orthonormée de E et si A est la matrice de f dans B, alors la matrice A^* de f^* dans B vérifie $A^* = {}^t A$.
- 3. Montrer que si f et g sont deux endomorphismes de E, alors $(f^*)^* = f$, $(f+g)^* = f^* + g^*$, $\lambda f^* = (\lambda f)^*$ et $(g \circ f)^* = f^* \circ g^*$.

Definition 1.11. Un endomorphisme f de E est dit autoadjoint (ou symétrique) si $f^* = f$. La matrice d'un endomorphisme symétrique f dans une base orthonormée de E est symétrique.

Exercice 11. (Théorème spectral)

Soit f un endomorphisme symétrique de E.

- 1. Montrer que :
 - a) Les valeurs propres de f sont réelles.
 - b) Si F est un sous-espace de E stable par f, alors F^{\perp} est stable par f.
 - c) Les sous-espaces propres de f sont deux à deux orthogonaux.
 - d) f est diagonalisable et il existe une base orthonormée formée de vecteurs propres de f.
- 2. En déduire que si A est une matrice symétrique réelle, alors A est diagonalisable et il existe une matrice orthogonale P telle que $P^{-1}AP = {}^tPAP$ soit diagonale.

Exercice 12. Soient $E := \mathcal{M}_{p,q}(\mathbb{R})$, A un élément de $\mathcal{M}_p(\mathbb{R})$ et B un élément de $\mathcal{M}_q(\mathbb{R})$, p et q étant deux entiers strictement positifs. On définit sur $E \times E$ l'application $\langle ., . \rangle$ par

$$\langle X, Y \rangle := \operatorname{tr}(^t XY)$$

et sur E l'application f par f(X) = AX - XB

- 1. Montrer que $\langle ., . \rangle$ définit un produit scalaire sur E.
- 2. Déterminer l'adjoint de f pour ce produit scalaire.
- 3. Trouver une condition nécessaire et suffisante sur A et B pour que $f^* = f$.

Exercice 13. Soit E un espace vectoriel euclidien, et $\varphi: E \times E \to \mathbb{R}$ une forme bilinéaire symétrique.

- 1. Montrer qu'il existe $u \in \mathcal{L}(E)$ tel que pour tous $x, y \in E$, on ait $\varphi(x, y) = \langle x, u(y) \rangle$.
- 2. Montrer que $u = u^*$.
- 3. En déduire qu'il existe une base orthonormée $\{e_i\}$ de E, orthogonale pour φ . Que dire de la matrice de φ dans cette base?

Exercice 14. On se place dans \mathbb{R}^4 .

1. Diagonaliser la matrice symétrique suivante à l'aide d'une matrice orthogonale P:

$$A = \begin{pmatrix} 9 & 0 & 0 & 0 \\ 0 & 5 & 4 & -2 \\ 0 & 4 & 5 & 2 \\ 0 & -2 & 2 & 8 \end{pmatrix}$$

2. Soit q la forme quadratique sur \mathbb{R}^4 ayant A pour matrice dans la base canonique de \mathbb{R}^4 . Calculer

$$\sup_{x \in \mathbb{R}^4 \backslash \{0\}} \frac{q(x)}{\langle x, x \rangle}$$

où $\langle .,. \rangle$ désigne le produit scalaire euclidien usuel sur \mathbb{R}^4 .

1.5 Décomposition polaire

Cette section est dédiée au théorème de décomposition polaire des matrices inversibles. On considère n un entier naturel non nul. **Notations et conventions**

- $S_n(\mathbb{R})$ (respectivement $S_n^+(\mathbb{R})$, $S_n^{++}(\mathbb{R})$): l'ensemble des matrices symétriques (respectivement symétriques positives, symétriques définies positives) dans $\mathcal{M}_n(\mathbb{R})$.
- Si E est un espace euclidien, S(E) (respectivement $S^+(E)$, $S^{++}(E)$) désigne l'ensemble des endomorphismes autoadjoints (respectivement autoadjoints positifs, autoadjoints définis positifs) de E.

Exercice 15. (Racine carrée d'une matrice symétrique réelle positive)

Soient E un espace euclidien et $f \in S^+(E)$. On note $\lambda_1, \ldots, \lambda_r$ les valeurs propres distinctes de f, E_1, \ldots, E_r les espaces propres respectivement associés à $\lambda_1, \ldots, \lambda_r$ et d_1, \ldots, d_r leurs dimensions respectives.

- 1. Supposons qu'il existe $g \in S^+(E)$ tel que $f = g^2$. Montrer que, pour tout $i \in [1, r]$, g laisse stable E_i . Pour tout $i \in [1, r]$, on note alors g_i la restriction de g à E_i . Montrer que $g_i = \sqrt{\lambda_i} Id_{E_i}$.
- 2. Montrer qu'il existe un unique $g \in S^+(E)$ tel que $f = g^2$.
- 3. En déduire que toute matrice $A \in S_n^+(\mathbb{R})$ admet une unique racine carrée $S \in S_n^+(\mathbb{R})$. La matrice S est appelée la racine carrée de A.

Exercice 16. (Décomposition polaire dans $GL_n(\mathbb{R})$)

Le but de cet exercice est de montrer que pour tout $M \in GL_n(\mathbb{R})$, il existe un unique couple $(O, S) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que M = OS (cette décomposition unique de M est appelée sa décomposition polaire).

- 1. Existence de (O, S): Soit $M \in GL_n(\mathbb{R})$
 - a) Montrer que ${}^tMM \in S_n^{++}(\mathbb{R})$. On note alors S la racine carrée de tMM et on pose $O := MS^{-1} = ({}^tM)^{-1}S$.
 - b) Montrer que $O \in O_n(\mathbb{R})$ et que M = OS.
- 2. Unicité de (O, S): Soient (O, S) et (O', S') deux couples tels que OS = O'S'. Calculer M^tM de deux façons différentes et en déduire S = S' puis O = O'.

Exercice 17. (Et il se passe quoi en dimension 1?)

On rappelle que tout complexe $z := a + ib \neq 0$ peut se décrire comme une matrice réelle

$$M(z) := \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathrm{GL}_2(\mathbb{R})$$

Décrire la décomposition polaire de M(z). En déduire une écriture particulière de z dans \mathbb{C} .

Exercice 18. (Compacité de $O_n(\mathbb{R})$)

- 1. Montrer que $O_n(\mathbb{R})$ est une partie fermée dans $\mathcal{M}_n(\mathbb{R})$
- 2. Soit $A = (a_{i,j})_{i,j \in [1,n]} \in O_n(\mathbb{R})$
 - a) Montrer que, pour tout $i \in [1, n]$, on a $\sum_{i=1}^{n} a_{i,i}^2 = 1$
 - b) En déduire que $||A||_{\infty} \leq 1$.
- 3. Montrer que $O_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
- 4. Soit G un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$ tel que G soit une partie compacte de $\mathcal{M}_n(\mathbb{R})$ contenant $O_n(\mathbb{R})$.
 - a) Soit $M \in G$ et M = OS sa décomposition polaire. Soit $P \in O_n(\mathbb{R})$ et D une matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ telle que $S = PDP^{-1}$. Montrer que $D^p \in G$ pour tout $p \in \mathbb{Z}$. En déduire que $D = I_n$.
 - b) Montrer que $O_n(\mathbb{R})$ est maximal parmi les sous-groupes compacts de $\mathrm{GL}_n(\mathbb{R})$

Exercice 19. (Un homéomorphisme)

Montrer que l'application

$$O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R}) \longrightarrow \operatorname{GL}_n(\mathbb{R})$$

 $(O,S) \longmapsto OS$

est un homéomorphisme.

2 Espaces hermitiens

2.1 Définitions

Les espaces hermitiens sont les analogues complexes des espaces euclidiens réels. On se placera dans le cadre d'un espace vectoriel complexe E, qu'on supposera de dimension finie.

Definition 2.1. (Application semi-linéaire). Une application $u: E \to F$ est dite semi-linéaire si elle vérifie

- $\forall x, y \in Z$, u(x+y) = u(x) + u(y)
- $\forall \lambda \in \mathbb{C}, x \in E, \ u(\lambda x) = \overline{\lambda}u(x).$

Definition 2.2. Une *forme sesquilinéaire* sur E est une application $f: E \times E \to \mathbb{C}$ telle que

- Pour tout $y \in E$, l'application $f(-,y): x \mapsto f(x,y)$ est une application linéaire de E dans \mathbb{C} .
- Pour tout $x \in E$, l'application $f(x, -): y \mapsto f(x, y)$ est une application semi-linéaire de E dans \mathbb{C}

On peut aussi dire que f est linéaire en sa première variable, et semi-linéaire en sa seconde variable.

Exercice 20. (Expression matricielle) Soient $f: E \times E \to \mathbb{C}$ une forme sesquilinéaire et $\{e_i\}_{i \in [\![1,n]\!]}$ une base de E. On pose $A = (f(e_j,e_k))_{j,k \in [\![1,n]\!]}$. Soient $x,y \in E$ et soient $X,Y \in \mathbb{C}^n$ les coordonnées de x et y dans la base $\{e_i\}$. Montrer que l'on a

$$f(x,y) = {}^{t}XA\overline{Y}$$

Definition 2.3. Une *forme hermitienne* sur E est une application $f: E \times E \to \mathbb{C}$ telle que

- $x \mapsto f(x,y)$ est \mathbb{C} -linéaire.
- Pour tous $x, y \in E$, on a f(x, y) = f(y, x)

En particulier, f est sesquilinéaire. On dit qu'une forme hermitienne f est **positive** si $f(x,x) \ge 0$ est positive quel que soit $x \in E$. On dit qu'une forme hermitienne f est **définie positive** si, de plus, $f(x,x) = 0 \Leftrightarrow x = 0$.

Definition 2.4. Un *produit hermitien* sur E est une forme hermitienne définie positive. Un \mathbb{C} -espace vectoriel E de dimension finie muni d'un produit hermitien est appelé un $espace\ hermitien$.

Exercice 21. (Pourquoi semi-linéaire?) La forme bilinéaire $(x,y)\mapsto \sum_{i=1}^n x_iy_i$, donnant le produit scalaire usuel sur \mathbb{R}^n , peut être définie sur n'importe quel corps, y compris \mathbb{C} . Montrer qu'il existe un vecteur $x\in\mathbb{C}^2\setminus\{0\}$ tel que $\varphi(x,x)<0$, où φ désigne le produit scalaire usuel.

Exercice 22. Parmi les applications $f: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}$ suivantes, lesquelles sont des formes sesquilinéaires, respectivement hermitiennes? Calculer dans ce cas leur matrice dans la base canonique de \mathbb{C}^2 .

- 1. $f_1(x,y) = (1+i)x_1y_1 + 2x_1\overline{y_2}$
- 2. $f_2(x,y) = (1+i)x_1\overline{y_1} + 2x_1\overline{y_2}$
- 3. $f_3(x,y) = x_1\overline{y_1} + ix_1\overline{y_2} ix_2\overline{y_1}$

- 4. $f_4(x,y) = ix_1\overline{y_1} + ix_1\overline{y_2} ix_2\overline{y_1}$
- 5. $f_5(x,y) = \text{Re}(x_1y_2)$
- 6. $f_6(x,y) = \text{Im}(x_1 \overline{y_2})$

Exercice 23. Soit f une forme hermitienne sur E.

- 1. Montrer que Re(f) (resp. Im(f)) est une forme bilinéaire symétrique, respectivement antisymétrique sur E, en tant que \mathbb{R} -espace vectoriel.
- 2. Si f est hermitienne définie positive, montrer que Re(f) est un produit scalaire sur E en tant que \mathbb{R} -espace vectoriel.

Exercice 24. Soit f une forme sesquilinéaire sur E.

1. Pour $x \in E$, on pose q(x) := f(x, x). Établir la formule de polarisation suivante, pour tout $x, y \in E$.

$$f(x,y) = \frac{1}{4} (q(x+y) - q(x-y) + iq(x+iy) - iq(x-iy))$$

2. En déduire que f est hermitienne si et seulement si, pour tout $x \in E$, q(x) est réel.

2.2 C'est tout pareil qu'euclidien

Il y a beaucoup de points communs entre les espaces euclidiens et hermitiens :

Exercice 25. (Cauchy-Schwarz) Montrer l'inégalité de Cauchy-Schwarz : Soit $(E, \langle ., . \rangle)$ un espace hermitien. Pour tout $x, y \in E$, on a

$$|\langle x, y \rangle| \le ||x|| \, ||y||$$

avec égalité si et seulement si x et y sont colinéaires. (on pourra s'inspirer du cas réel).

Exercice 26. Soit $(E, \langle ., . \rangle)$ un espace hermitien, l'application $x \mapsto ||x|| = \sqrt{\langle x, x \rangle}$ est bien définie et induit une norme sur E.

L'existence de b.o.n, le procédé de Gram-Schmidt et la projection orthogonale marchent de la même manière que dans les espaces euclidiens.

Definition 2.5. On pose U(E) l'ensemble des *isométries vectorielles* de E muni d'un produit hermitien. Il est isomorphe au groupe

$$U_n(\mathbb{C}) = \{ M \in \mathcal{M}_n(\mathbb{C}) \mid M^*M = I_n \}$$

Exercice 27. Soit $f \in U(E)$, montrer qu'il existe une base orthonormée de E dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} e^{i\theta_1} & & \\ & \ddots & \\ & & e^{i\theta_n} \end{pmatrix}$$

On pourra s'inspirer du cas Euclidien.

Comme dans le cas Euclidien, pour f un endomorphisme de E, il existe un unique f^* , dit adjoint à f tel que

$$\langle f(u), v \rangle = \langle u, f^*(v) \rangle$$
.

Si A est la matrice de f dans une base orthonormée, la matrice de f^* est $A^* = {}^t\overline{A}$ la **transconjuguée** de A.

Definition 2.6. Une matrice A de $\mathcal{M}_n(\mathbb{C})$ est dite **hermitienne** si $A = A^* = {}^t\overline{A}$

Exercice 28. Soit f un endomorphisme hermitien de E. Montrer que f se diagonalise sur une base orthonormée de E. En déduire un théorème de réduction des matrices hermitiennes.

Exercice 29. En notant $H_n(\mathbb{C}), H_n^+(\mathbb{C})$ et $H_n^{++}(\mathbb{C})$ les matrices hermitiennes (resp. positives, définies positives). Montrer que l'application

$$U_n(\mathbb{C}) \times H_n^{++}(\mathbb{R}) \longrightarrow \mathrm{GL}_n(\mathbb{C})$$

 $(U, H) \longmapsto UH$

Est un homéomorphisme. On pourra utiliser (ou redémontrer) que $U_n(\mathbb{C})$ est compact.

Exercice 30. 1. Réduire la matrice

$$A = \begin{pmatrix} 1 & i\sqrt{2} & 0\\ -i\sqrt{2} & 1 & -i\sqrt{2}\\ 0 & i\sqrt{2} & 1 \end{pmatrix}$$

dans le groupe unitaire.

2. Les matrices hermitiennes suivantes sont elles positives? Négatives? Vous pourrez utiliser la trace, le déterminant et les valeurs propres.

$$A = \begin{pmatrix} -2 & -2i & 1\\ 2i & 1 & -2i\\ 1 & 2i & -2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & -i & 1\\ i & 1 & 0\\ 1 & 0 & 1 \end{pmatrix}$$

Exercice 31. (Théorème de Maschke) On se donne un groupe fini G et (ρ, E) une représentation de G dans un espace hermitien $(E, \langle ., . \rangle)$ de dimension n.

1. Montrer que l'application

$$(x,y) \mapsto \langle x,y \rangle_{\rho} := \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)(x), \rho(g)y \rangle$$

définit un produit scalaire hermitien sur E. Montrer que pour tout $g \in G$, l'isomorphisme $\rho(g)$ est unitaire pour ce produit scalaire. On notera $\|.\|_{\rho}$ la norme associée.

- 2. Montrer que si F est un sous-espace vectoriel G-invariant de E, son orthogonal $F^{\perp_{\rho}}$ relativement à $\langle .,. \rangle_{\rho}$ est aussi G-invariant.
- 3. Montrer que (ρ, E) est somme directe de sous-représentations irréductibles.
- 4. Bonus : Montrer que tout sous-groupe fini de $GL_n(\mathbb{C})$ est conjugué à un sous-groupe de $U_n(\mathbb{C})$.