Examen du lundi 13 mai 2024

Durée : 2h. Aucun document et aucun appareil électronique n'est autorisé.

Questions de cours

- 1) Rappeler la définition de la branche principale du logarithme ; pourquoi est-elle holomorphe?
- 2) Déduire de la formule de Cauchy que toute fonction holomorphe est analytique.

Exercice 1 : Le théorème de Liouville à partir de la formule des résidus Soit f une fonction entière.

- 1) Soient $a,b \in \mathbb{C}$ tels que $a \neq b$. Notons C_R le cercle de centre 0 et de rayon R, orienté dans le sens direct, pour un certain $R > \max(|a|,|b|)$. Montrer que $\frac{1}{2i\pi} \int_{C_R} \frac{f(z)}{(z-a)(z-b)} dz = \frac{f(a)-f(b)}{a-b}$. On prendra garde aux cas où f(a) = 0 ou f(b) = 0.
- 2) Supposons f bornée. Montrer que l'intégrale précédente tend vers 0 si R tend vers l'infini.
- 3) En déduire le théorème de Liouville.

Exercice 2: Logarithmes de fonctions holomorphes

Soit U un ouvert de \mathbb{C} et f une fonction holomorphe sur U. Un logarithme de f sur U est une fonction $g:U\to\mathbb{C}$ tel que $f(z)=e^{g(z)}$ pour tout $z\in U$.

- 1) Supposons qu'il existe un logarithme g de f sur U. Exprimer g' en fonction de f et f'.
- 2) Supposons que f'/f admette une primitive h. Calculer la dérivée de f/e^h .
- 3) Supposons que U soit un ouvert étoilé et que $f(z) \neq 0$ pour tout $z \in U$. Montrer que f admet un logarithme sur U.
- 4) Pourquoi la condition de non-annulation est-elle nécessaire ? Montrer que si U n'est pas étoilé, elle n'est pas toujours suffisante (penser à la fonction $z \mapsto z$).
- 5) Supposons U connexe. Si f admet deux logarithmes g_1 et g_2 sur U, que peut-on dire de $g_1 g_2$?

Exercice 3: La fonction arctangente

Rappelons que les fonctions trigonométriques usuelles sont définies à partir de l'exponentielle par les formules : $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$, $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$, et $\tan(z) = \frac{\sin(z)}{\cos(z)}$.

- 1) Rappeler la définition de la fonction arctangente réelle, et esquisser un dessin de son graphe.
- On s'intéresse aux prolongement de arctan en une fonction holomorphe. Précisément, on cherche un ouvert connexe U tel que $U \cap \mathbb{R}$ soit un intervalle non vide de \mathcal{R} et f holomorphe sur U qui vérifie $f(z) = \arctan(z)$ si $z \in U \cap \mathbb{R}$.
- 2) Utiliser le principe de l'unicité du prolongement analytique pour montrer qu'étant donné U, un tel f est unique s'il existe, et doit vérifier $\tan(f(z)) = z$ pour tout $z \in U$.
- 3) Rappeler pourquoi $\tan' = 1 + \tan^2$, puis en déduire que si $\pm i \notin U$, on doit avoir $f'(z) = \frac{1}{1+z^2}$ pour tout $z \in U$. Remarquer qu'on doit aussi avoir $f(z_0) = \arctan(z_0)$ pour un certain $z_0 \in U \cap \mathbb{R}$.
- 4) Réciproquement, si f vérifie les deux conditions de la question précédente, pourquoi a-t-on $f(z) = \arctan(z)$ si z est réel ? En déduire qu'il existe une solution f dès que U est étoilé et $\pm i \notin U$.
- 5) En développant $\frac{1}{1+z^2}$ en série entière autour de z=0, trouver une série entière qui définit une solution du problème, sur un disque U centré en 0 que l'on précisera.

Prenons maintenant pour U l'ouvert $\mathbb{C} \setminus \{ix \mid x \in \mathbb{R}, |x| \ge 1\}$.

- 6) Dessiner U, puis expliquer pourquoi c'est un ouvert étoilé.
- 7) Montrer que $z \mapsto \frac{1+iz}{1-iz}$ définit une bijection entre $\mathbb{C} \setminus \{-i\}$ et $\mathbb{C} \setminus \{-1\}$, puis entre U et $\mathbb{C} \setminus \mathbb{R}_-$.
- 8) Soient $x, z \in \mathbb{C}$, avec $z \neq -i$. Montrer que $z = \tan(x)$ si et seulement si $e^{2ix} = \frac{1+iz}{1-iz}$.
- 9) Déduire des questions précédentes que l'unique solution f au problème posé sur U est donné par $f(z) = \frac{1}{2i} \operatorname{Log} \left(\frac{1+iz}{1-iz} \right)$, où Log désigne la branche principale du logarithme.