Examen du lundi 24 juin 2024

Durée : 2h. Aucun document et aucun appareil électronique n'est autorisé.

Dans tout le sujet, Log désigne la branche principale du logarithme.

Questions de cours

- 1) Rappeler la définition de la branche principale de la racine carrée ; pourquoi est-elle holomorphe ?
- 2) Énoncer et prouver le théorème de Liouville.

Exercice 1: fonctions puissances

Soit $\alpha \in \mathbb{C}$. Notons $U = \mathbb{C} \setminus]-\infty, -1]$. Pour $z \in U$, on pose $f(z) = e^{\alpha \log(1+z)}$.

- 1) Justifier que f est bien définie et holomorphe sur U, puis montrer que $f'(z) = \frac{\alpha}{1+z} f(z)$ pour $z \in U$.
- 2) Pourquoi f est-elle développable en série entière au voisinage de 0? Soit R le rayon de convergence du développement correspondant. Pourquoi a-t-on $R \ge 1$? (on fera un dessin).
- 3) Notons $\sum_{n\geqslant 0} a_n z^n$ le développement en série entière de f en 0. Déduire de la question 1 que pour tout $n\geqslant 0$, on doit avoir $a_{n+1}=\frac{\alpha-n}{n+1}a_n$.
- 4) En déduire que R = 1 si $\alpha \notin \mathbb{N}$. Que vaut R si $\alpha \in \mathbb{N}$? En déduire que f ne se prolonge en une fonction analytique au voisinage de -1 que si $n \in \mathbb{N}$, et qu'alors elle se prolonge en une fonction entière.
- 5) Montrer que pour tout $n \ge 0$, on a $a_n = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$, qu'on note aussi $\binom{\alpha}{n}$ (qui vaut par convention 1 si n=0). Quelle est la formule qu'on a ainsi retrouvée ?
- 6) Justifier que pour $\alpha = 1/2$, on a $f(z) = \sqrt{1+z}$, où $\sqrt{-}$ est la branche principale de la racine carrée.

Exercice 2: Une intégrale trigonométrique

- 1) Montrer que $\int_0^{\pi} \frac{d\theta}{1+\sin(\theta)^2} = 2i \int_C \frac{dz}{z^2-6z+1}$, où C désigne le cercle unité orienté dans le sens direct. On pourra commencer par écrire le membre de gauche sous la forme d'une intégrale sur $[0, 2\pi]$.
- 2) Montrer que le polynôme $z^2 6z + 1$ a une seule racine α dans le disque unité, que l'on déterminera.
- 3) En déduire la valeur de $\int_0^\pi \frac{d\theta}{1+\sin(\theta)^2}$. On pourra par exemple écrire $\frac{1}{z^2-6z+1}$ sous la forme $f(z)/(z-\alpha)$.

Exercice 3: Un calcul intégral

Pour $z \in \mathbb{C} - \mathbb{R}_{-}$, on pose $f(z) = \frac{\text{Log}(z)}{1-z}$ si $z \neq 1$, et f(1) = -1.

1) Montrer que f est continue sur $\mathbb{C} - \mathbb{R}_-$. En déduire qu'elle est holomorphe sur cet ouvert.

Soit $\varepsilon \in]0,1[$ et $D_{\varepsilon} := \{z \in \mathbb{C} \mid |z-1| \leqslant 1 \text{ et } |z| \geqslant \varepsilon \}$. On oriente le bord ∂D_{ε} dans le sens direct.

- 2) Dessiner D_{ε} .
- 3) Que vaut $\int_{\partial D_z} f(z)dz$?

Découpons le chemin ∂D_{ε} en deux arcs de cercles γ (de rayon ε) et Γ (de rayon 1).

- 4a) Donner une borne pour la longueur de γ .
- 4b) Majorer |f(z)| si $|z| = \varepsilon$.
- 4c) En déduire que $\int_{\gamma} f(z) dz$ tend vers 0 si ε tend vers 0.
- 5a) Montrer que $\int_{\Gamma} f(z)dz = -i \int_{-\pi+\delta}^{\pi-\delta} \text{Log}(1+e^{i\theta})d\theta$, pour un certain $\delta > 0$ qui dépend de ε et qui tend vers 0 si ε tend vers 0. On donnera une définition géométrique de δ .

Question bonus : trouver une formule explicite pour δ en fonction de ε .

- 5b)Calculer Log $(1 + e^{i\theta})$, pour $\theta \in]-\pi,\pi[$.
- 5c) En déduire que $\int_0^{\pi/2} \ln(\cos(t)) dt = -\frac{\pi}{2} \ln(2)$.