TD3: Séries entières

Rayon de convergence

Exercice 1. Déterminer le rayon de convergence des séries entières suivantes :

1)
$$\sum_{n=0}^{\infty} z^n$$
;

2)
$$\sum_{n \geq 0} \frac{z^n}{n!}$$

$$1) \sum_{n \geqslant 0} z^n \ ; \qquad 2) \sum_{n \geqslant 0} \frac{z^n}{n!} \ ; \qquad 3) \sum_{n \geqslant 0} e^{n \sin(n)} z^n \ ; \qquad 4) \sum_{n \geqslant 0} n! z^{n^2} \ ; \qquad 5) \sum_{n \geqslant 1} \frac{1}{\sqrt{n}} z^{n!} \ ; \qquad 6) \sum_{n \geqslant 1} \frac{n!}{n^n} z^n.$$

4)
$$\sum_{n>0} n! z^{n^2}$$

5)
$$\sum_{n\geq 1} \frac{1}{\sqrt{n}} z^{n!}$$
;

$$6) \sum_{n \ge 1} \frac{n!}{n^n} z^n$$

Exercice 2. Déterminer le rayon de convergence de la série entière $\sum a_n z^n$ dans les cas suivants :

- 1) a_n est la *n*-ième décimale de π ;
- 2) $\sum_{n\geq 0} (-1)^n a_n$ converge et $\sum_{n\geq 0} a_n$ diverge;

3)
$$a_n = \frac{n}{(2n+1)!}$$

3)
$$a_n = \frac{n}{(2n+1)!}$$
; 4) $a_n = \sum_{k=1}^{n} \frac{1}{k}$; 5) $a_n = \frac{1}{n(n+1)}$.

5)
$$a_n = \frac{1}{n(n+1)}$$
.

Exercice 3. On s'intéresse à certaines conséquences de la formule d'Hadamard pour le calcul des rayons de convergence.

- 1) Fixons $k \ge 0$. Montrer que $\sqrt[n]{n^k}$ tend vers 1 quand n tend vers l'infini.
- 2) Montrer que pour tout polynôme $P \in \mathbb{C}[X]$, $\sqrt[n]{P(n)}$ tend vers 1 quand n tend vers l'infini.
- 3) Exprimer le rayon de convergence de $\sum_{n\geqslant 0} P(n)a_nz^n$ en fonction de celui de $\sum_{n\geqslant 0} a_nz^n$.
- 4) Quel est le rayon de convergence de $\sum_{n\geqslant 0} a_n z^n$ pour $a_n = \frac{2^n \ln(n)}{3n^5 + n + 1}$?

Exercice 4. Soit $\sum_{n\geqslant 0} a_n z^n$ une série entière de rayon de convergence R>0 et de somme f. Soient également $s_n := \sum_{k=0}^n a_k$ et $c_n := \frac{s_n}{n+1}$.

- 1) Déterminer le rayon de convergence de $g(z) = \sum_{n \geqslant 0} s_n z^n$ et de $h(z) = \sum_{n \geqslant 0} c_n z^n$
- 2) Exprimer g en fonction de f.
- 3) Écrire une équation différentielle dont h est solution, en fonction de f.

Calculs avec les séries entières

Exercice 5. Calculer les termes d'ordre ≤ 3 dans le développement en série entière en 0 des fonctions suivantes (qu'on peut aussi voir comme des séries formelles en z):

1) $e^z \sin(z)$,

- 2) $\sin(z)\cos(z)$, 3) $\frac{e^z-1}{z}$, 4) $\frac{1}{\cos(z)}$, 5) $\frac{e^z-\cos(z)}{z}$, 6) $\tan(z)$, 7) $\frac{e^z}{\sin(z)}$.

Exercice 6. Soit $f(z) = \sum a_n z^n$ une série convergente.

- 1) Montrer que $z\mapsto f(-z)$ et $z\mapsto -f(-z)$ sont aussi des sommes de séries entières convergentes.
- 2) En déduire un critère pour que f soit paire (resp. impaire).

Exercice 7. Chercher toutes les séries entières $f(z) = \sum a_n z^n$ qui vérifient $f(z^2) = f(z)^2$.

Exercice 8 (Suites récurrentes). Les nombres de Fibonacci sont définis par $F_0 = F_1 = 1$ et $F_{n+2} = F_{n+1} + F_n$. On pose $f(z) := \sum_{n=0}^{\infty} F_n z^n$, et on note R son rayon de convergence.

- 1) Montrer par récurrence que $F_n \leq 2^n$. En déduire que R > 0.
- 2) Exprimer $\sum_{n=0}^{\infty} F_{n+1} z^n$ et $\sum_{n=0}^{\infty} F_{n+2} z^n$ en fonction de f.

- 3) En déduire que f coïncide avec une fraction rationnelle sur son disque de convergence.
- 4) Décomposer cette fraction rationnelle en éléments simples, puis développer ces éléments simples en série entière. En déduire une expression explicite pour F_n en fonction de n.
- 5) Réfléchir aux généralisations possibles de ce qu'on vient de faire.

Exercice 9. Le but de cet exercice est d'étudier $f(z) = \sum_{n \geq 0} \frac{z^n}{n^2}$.

- 1) Déterminer le rayon de convergence R de cette série entière.
- 2) Montrer que $f'(z) = -\frac{Log(1-z)}{z}$ sur tout le disque de convergence.

Exercice 10 (Nombres de Bernouilli). On définit les nombres de Bernouilli B_n par :

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n.$$

- 1) Prouver que $\sum_{k=0}^{n-1} \frac{B_k}{k!(n-k)!} = \begin{cases} 1 \text{ si } n=1, \\ 0 \text{ si } n>1. \end{cases}$
- 2) Calculer B_i pour i=0,1,2,3,4,5. Montrer que $B_n=0$ si n est impair $\neq 1$.
- 3) Montrer que $\frac{z}{2} \frac{e^{\frac{z}{2}} + e^{-\frac{z}{2}}}{e^{\frac{z}{2}} e^{-\frac{z}{2}}} = \sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!} z^{2n}$, puis que $\frac{\pi z}{\tan(\pi z)} = \sum_{n=0}^{\infty} (-1)^n \frac{(2\pi)^{2n}}{(2n)!} B_{2n} z^{2n}$.
- 4) Exprimer les développements en série entière en 0 de $\tan(z)$, $z/\sin(z)$ et $z/\tan(z)$ en fonction des nombres de Bernouilli.