TD1: Rappels sur les nombres complexes – dérivabilité

Nombres complexes: rappels

Exercice 1. Exprimer sous forme algébrique et sous forme polaire les nombres complexes suivants :

1)
$$a = e^{i\pi/3} - 1$$
; 2) $b = (1+i)(\sqrt{3}+i)$; 3) $c = \frac{1+2i}{3-4i} + \frac{2-i}{5i} = 0$;

4)
$$d = (1 + i\sqrt{3})^n$$
 pour $n \ge 1$; 5) $e = \sum_{k=1}^n \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)^k$ pour $n \ge 1$.

6) $e^{i\alpha} + e^{i\beta}$, où $\alpha, \beta \in \mathbb{R}$. On pourra mettre $e^{i\frac{\alpha+\beta}{2}}$ en facteur.

Exercice 2. Prouver, pour tout $z \in \mathbb{C} \setminus \{i\}$ l'équivalence : $|z| = 1 \Leftrightarrow \frac{i\bar{z}+1}{\bar{z}+i} \in \mathbb{R}$.

Exercice 3. Résoudre les équations suivantes dans \mathbb{C} :

1)
$$z^2 = 1 + i$$
; 2) $z^2 = -5 + 12i$; 3) $(3 + i)z^2 - (8 + 6i)z + 25 + 5i = 0$;

4)
$$z^4 - 3z^3 + \frac{9}{2}z^2 - 3z + 1 = 0$$
 (Indication: vérifier que $1 + i$ est solution);

5)
$$z^3 - (1+2i)z^2 + 3(1+i)z - 10(1+i) = 0$$
, sachant qu'elle admet une solution imaginaire pure ;

6)
$$(z+1)^n = (z-1)^n$$
 avec $n \ge 1$ entier fixé.

Exercice 4. Déterminer, dans chaque cas, l'ensemble des points M d'affixe z vérifiant:

- 1) $\operatorname{Re}(\frac{1}{z}) = r$ avec $r \neq 0$ fixé, où Re désigne la partie réelle,
- $2) z^3 \in \mathbb{R} \text{ et } z^3 \leqslant 8,$
- 3) |z+i| = |z-i|,
- 4) $|z \alpha| < |1 \bar{\alpha}z|$ avec $\alpha \in \mathbb{D}(0, 1) := \{ w \in \mathbb{C} \mid |w| < 1 \},$
- 5) $|z| = |1 z| = |\frac{1}{z}|$.

Exercice 5. Soit $n \ge 1$ un entier.

- 1) Soit $\omega \in \mathbb{C}$ une racine primitive n-ème de l'unité, i.e. $\omega^n = 1$ et $\omega^\ell \neq 1$ pour $1 \leqslant \ell \leqslant n-1$. Montrer que toute racine n-ème de l'unité s'écrit ω^k pour un certain entier k avec $0 \leqslant k \leqslant n-1$.
- 2) Pour $\alpha \in \mathbb{C}^*$, soit $\arg(\alpha) \in [0, 2\pi[$ la détermination principale de son argument. Montrer que toute solution de $z^n = \alpha$ peut s'écrire de façon unique sous la forme

$$z = \sqrt[n]{|\alpha|} \exp\left(\frac{i}{n}\arg(\alpha)\right) \omega^k$$

avec $0 \leqslant k \leqslant n-1$ et ω une racine primitive n-ème de l'unité.

3) En déduire que les sommets d'un polygône régulier à n côtés du plan complexe sont d'affixes respectives $z_k = a\omega^k + b$ avec $a \in \mathbb{C}^*, b \in \mathbb{C}$ et ω une racine primitive n-ème de l'unité.

Fonction exponentielle

Exercice 6. On rappelle qu'on définit (provisoirement) la fonction exponentielle complexe à partir des fonctions réelles exp, cos et sin: $\forall x, y \in \mathbb{R}, \ e^{x+iy} = e^x(\cos(y) + i\sin(y)).$

- 1) Montrer que pour tous $u, v \in \mathbb{C}$, $e^{u+v} = e^u e^v$.
- 2) Montrer que $e^z = 1$ si et seulement si $z \in 2i\pi\mathbb{Z}$.
- 3) En déduire que $e^z = e^{z'}$ si et seulement si $z' z \in 2i\pi\mathbb{Z}$.
- 4) Montrer que $z \mapsto e^z$ induit une bijection entre $\mathbb{R} + i \pi, \pi$ et $\mathbb{C} \mathbb{R}_-$.

Exercice 7. Soit $z \in \mathbb{C}$. On veut montrer que $\lim_{n \to +\infty} (1 + \frac{z}{n})^n = \exp(z)$.

- 1) À l'aide de la forme trigonométrique de z, montrer que $\lim_{n\to+\infty} |(1+\frac{z}{n})^n| = |\exp(z)|$.
- 2) Pourquoi a-t-on $\arg(w^n) = n \cdot \arg(w)$ et $\arg(w) = \arctan\left(\frac{\operatorname{Im}(w)}{\operatorname{Re}(w)}\right)$ si $\operatorname{Re}(w) \neq 0$?
- 3) Utiliser ce qui précède pour montrer que $\arg(\exp(z)) = \lim_{n \to +\infty} \arg\left(\left(1 + \frac{z}{n}\right)^n\right)$. (Indication : on pourra utiliser un développement limité).
- 4) Conclure quant à la limite souhaitée.

Sinus et cosinus

Exercice 8. (Fonctions sinus et cosinus). On définit le sinus et le cosinus d'un nombre complexe z par :

$$\cos(z) := \frac{e^{iz} + e^{-iz}}{2}$$
 et $\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}$.

- 1) En définissant la fonction exponentielle comme dans l'exercice 6, montrer que cette définition permet d'étendre les fonction réelles sinus et cosinus (supposées connues) à tout le plan complexe.
- 2) Montrer que, pour tout $z \in \mathbb{C}$, $\cos(z)^2 + \sin(z)^2 = 1$.
- 3) Démontrer la formule de Moivre : $\forall n \in \mathbb{N}, \ \forall t \in \mathbb{C}, \ (\cos(t) + i\sin(t))^n = \cos(nt) + i\sin(nt)$.
- 4) Démontrer que pour $a, b \in \mathbb{C}$, on a $\begin{cases} \cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b), \\ \sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b). \end{cases}$

Exercice 9. Résoudre les équations suivantes dans $\mathbb C$:

- 1) $\cos(az) = 0$ avec a > 0 réel fixé,
- 2) $\sin(az) = 0$ avec a > 0 réel fixé,
- $3) \cos(z) = i.$

Exercice 10. (Calcul de $\cos(\frac{2\pi}{5})$).

- 1) Soit $u := \exp(\frac{2i\pi}{5})$. Montrer que $u^4 + u^3 + u^2 + u + 1 = 0$.
- 2) Posons $a := u^4 + u$ et $b := u^3 + u^2$. Montrer que a + b = ab = -1. En déduire une équation du second degré donc a et b sont solutions, puis les valeurs possibles de a.
- 3) En déduire que $\cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5}-1}{4}$.
- 4) En déduire la valeur de $\sin(\frac{2\pi}{5})$.
- 5) Calculer les cosinus et sinus de $\frac{\pi}{5}$ et $\frac{3\pi}{5}$.

Exercice 11. Fixons $n \in \mathbb{N}$.

- 1) Montrer que pour tout $z \in \mathbb{C}$, on a $1 + z + z^2 + \cdots + z^n = \frac{z^{n+1}-1}{z-1}$.
- 2) En déduire que $1 + \cos(\theta) + \cos(2\theta) + \cdots + \cos(n\theta) = \frac{1}{2} + \frac{\sin((n + \frac{1}{2})\theta)}{2\sin(\frac{\theta}{2})}$, pour tout $\theta \in \mathbb{R}$.

Dérivabilité des fonctions complexes

Exercice 12. (Fonctions trigonométriques). Les fonctions sinus et cosinus sont définies comme dans l'exercice 8.

- 1) Montrer que sin, $\cos \in \mathcal{H}(\mathbb{C})$, et calculer leurs dérivées.
- 2) On définit la fonction tangente par $\tan(z) := \frac{\sin(z)}{\cos(z)}$. Où est-elle définie ? Justifier qu'elle est holomorphe sur son domaine de définition, et calculer sa dérivée.
- 3) On définit les fonctions hyperboliques ch, sh et th par ch(z) := cos(iz), sh(z) := -i sin(iz) et $th(z) = \frac{sh(z)}{ch(z)}$. Reprendre les questions précédente pour ces fonctions.

Exercice 13. Soit f une fonction holomorphe sur un ouvert U. On définit \overline{f} par $\overline{f}: z \mapsto \overline{f(z)}$.

- 1) Montrer que si $z \in U$ et $h \in \mathbb{C}$ tend vers 0, on a $\frac{\overline{f(z+h)} \overline{f(z)}}{h} = \overline{f'(z)} \cdot \frac{\overline{h}}{h} + o(1)$.
- 2) Que vaut \overline{h}/h si $h \in \mathbb{R}$? Et si $h \in i\mathbb{R}$? En déduire que \overline{f} est dérivable en z ssi f'(z) = 0.
- 3) À quelle condition \overline{f} est-elle holomorphe sur U? (utiliser le résultat de l'exercice 15).
- 4) Soit $P \in \mathbb{C}[X]$ un polynôme non constant. Montrer que $z \mapsto P(\overline{z})$ n'est dérivable (au sens complexe) qu'en un nombre fini de points.

Exercice 14. Soit D un disque ouvert de \mathbb{C} , soit $f:D\to\mathbb{C}$ une fonction holomorphe et $\gamma:[0,1]\to D$ une fonction \mathcal{C}^1 .

- 1) Montrer que $f \circ \gamma : [0,1] \to \mathbb{C}$ est dérivable, et calculer sa dérivée. On pourra écrire des taux d'accroissements ou des développements limités.
- 2) Supposons que f'=0. Montrer qu'alors $f\circ\gamma$ est constante (on pourra considérer sa partie réelle et sa partie imaginaire comme des fonctions de \mathbb{R} dans \mathbb{R}), et donc que $f(\gamma(1))=f(\gamma(0))$.
- 3) Rappeler pourquoi il existe un chemin \mathcal{C}^1 entre deux points quelconques de D.
- 4) Montrer que si f' = 0 sur D, alors f est constante.

Exercice 15. Soit U un ouvert connexe de \mathbb{C} , et f une fonction holomorphe sur U, de dérivée nulle. On rappelle que f est alors constante sur tout disque inclus dans U (Exercice 14). Fixons $z_0 \in U$, et posons $X := \{z \in U \mid f(z) = f(z_0)\}$.

- 1) Montrer que X est fermé dans U. On pourra considérer une suite de points de X ayant une limite dans U.
- 2) Soit $z \in X$. Montrer que X contient un disque ouvert de centre z. En déduire que X est ouvert dans U.
- 3) En déduire que X = U, donc que f est constante. Que dire si U n'est pas connexe?

Exercice 16. Soit U un ouvert connexe de \mathbb{C} , et $f:U\to\mathbb{C}$ une fonction holomorphe.

- 1) Supposons que f est à valeurs réelles. Soit $z \in U$. En écrivant f'(z) comme limite d'un taux d'accroissement, montrer que $f'(z) \in \mathbb{R}$, et aussi que $f'(z) \in i\mathbb{R}$. En déduire que f' = 0, donc que f est constante (utiliser l'exercice 15).
- 2) Que dire si f est à valeurs imaginaires pures ?

Exercice 17. Définir une branche principale de la fonction racine cubique. Précisément, on cherche une fonction f de $\mathbb{C} - \mathbb{R}_{-}$ dans \mathbb{C} envoyant 1 sur 1 et telle que pour tout $z \in \mathbb{C} - \mathbb{R}_{-}$, $f(z)^3 = z$. Peut-on prolonger cette fonction à \mathbb{C}^* tout entier?

Annexe: Constructions du corps des nombres complexes

Exercice 18. L'ensemble des nombres complexes \mathbb{C} est défini comme le \mathbb{R} -espace vectoriel \mathbb{R}^2 , muni des lois internes suivantes pour deux éléments (x, y) et (x', y') de \mathbb{R}^2 :

$$\begin{cases} (x,y) + (x',y') := (x+x',y+y'), \\ (x,y) \times (x',y') := (xx'-yy',xy'+x'y). \end{cases}$$

1) Vérifier que $(\mathbb{C}, +, \times)$ est un corps. Que vaut $(0, 1)^2 = (0, 1) \times (0, 1)$?

Avec i := (0,1), on écrit désormais z = x + iy plutôt que z = (x,y) pour $z \in \mathbb{C}$, avec $x,y \in \mathbb{R}$. Avec ces notations, x est la partie réelle de z (notée Re(z)) et y est la partie imaginaire de z (notée Im(z)).

- 2) On identifie \mathbb{R} avec $\mathbb{R} \times \{0\} \subset \mathbb{C}$, via $\lambda \mapsto (\lambda, 0)$. Montrer que c'est une application \mathbb{R} -linéaire et un morphisme de corps.
- 3) Vérifier que les deux manières de multiplier un nombre complexe z = x + iy par un nombre réel λ (la multiplication externe donnée par $\lambda(x,y) = (\lambda x, \lambda y)$ et celle interne, donnée par $\lambda \times z$, en tenant compte de l'identification de la question 2,) coïncident.
- 3) Pour $z = x + iy \in \mathbb{C}$, on note $\bar{z} := x iy$ le conjugué de z. Vérifier que l'application $z \mapsto \bar{z}$ est un isomorphisme de corps, qu'elle est \mathbb{R} -linéaire mais pas \mathbb{C} -linéaire.
- 4) Pour $z = x + iy \in \mathbb{C}$, on note $|z| := \sqrt{z\overline{z}}$ le module de z. Vérifier que $z \mapsto |z|$ définit une norme sur \mathbb{C} .
- 5) Montrer les formules $2\operatorname{Re}(z) = z + \bar{z}$, $2\operatorname{Im}(z) = z \bar{z}$, et $|z|^2 = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2$.

Exercice 19. (Version alternative de celui du dessus) L'ensemble des nombres complexes \mathbb{C} est défini comme l'ensemble des matrices 2×2 à coefficients réels de la forme

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}), \ x, y \in \mathbb{R}$$

- 1) Montrer que \mathbb{C} est un \mathbb{R} -espace vectoriel de dimension 2.
- 2) Montrer que \mathbb{C} , muni de l'addition et du produit des matrices, est un corps. Calculer $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2$.
- 3) Montrer que l'application $\lambda \mapsto \lambda I_2$ de \mathbb{R} dans \mathbb{C} est un morphisme de corps. On identifie \mathbb{R} avec son image par ce morphisme, et on pose

$$i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

On écrit désormais z = x + iy plutôt que

$$z = x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + y \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

Avec $x, y \in \mathbb{R}$. Avec ces notations, x est la partie réelle de z (notée Re(z)) et y est la partie imaginaire de z (notée Im(z)).

- 4) Reprendre les question 3-4-5 de l'exercice ci-dessus avec ces nouvelles définitions.
- 5) Alternativement, montrer que $x + iy \mapsto \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ définit un isomorphisme entre $\mathbb C$ tel que défini dans l'exercice précédent et la version définie ci-dessus en termes de matrices.