<u>Titre</u>: Surjectivité de l'exponentielle $\exp: \mathcal{M}_n(\mathbb{C}) \to Gl_n(\mathbb{C})$

Recasages: 159,157,204,214,214

Thème : Algèbre commutative, algèbre linéaire, topologie, théorie des groupes.

Références : Zavidovique - Un max de Maths

<u>Théorème</u> 1. L'application exp : $\mathcal{M}_n(\mathbb{C}) \to Gl_n(\mathbb{C})$ est surjective.

Considérons $C \in \mathcal{M}_n(\mathbb{C})$, et $\mathbb{C}[C]$ l'algèbre les polynômes en C (image par l'évaluation en C de l'algèbre $\mathbb{C}[X]$). On raisonne en plusieurs étapes :

<u>Étape 1</u>: On a $\exp(C) \in \mathbb{C}[C]$, en effet, $\mathbb{C}[C]$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$, donc un fermé (les deux espaces sont de dimension finie). Ainsi,

$$\exp(C) := \lim_{n \to \infty} \sum_{k=0}^{n} \frac{C^k}{k!}$$

est dans $\mathbb{C}[C]$ comme limite de points de $\mathbb{C}[C]$.

Étape 2 : On a $\mathbb{C}[C]^{\times} = \mathbb{C}[C] \cap Gl_n(\mathbb{C})$ (les inversibles de l'anneau $\mathbb{C}[C]$ sont exactement les inversibles de $\mathcal{M}_n(\mathbb{C})$ se trouvant dans $\mathbb{C}[C]$). On bien-sûr une inclusion triviale de $\mathbb{C}[C]^{\times}$ dans $\mathbb{C}[C] \cap Gl_n(\mathbb{C})$. Réciproquement, soit $M \in \mathbb{C}[C] \cap Gl_n(\mathbb{R})$, on peut considérer son polynôme caractéristique $\chi_M(X) = \sum_{k=0}^n a_k X^k$, comme $M \in Gl_n(\mathbb{C})$, on a $\chi_M(0) = a_0 = det(M) \neq 0$, et on obtient, par le théorème de Cayley-Hamilton :

$$0 = \chi_M(M) = \sum_{k=0}^n a_k M^k \Rightarrow -a_0 I_n = \sum_{k=1}^n a_k M^k$$
$$\Rightarrow I_n = M \left(\frac{-1}{a_0} \sum_{k=0}^{n-1} a_{k+1} M^k \right)$$

Donc M^{-1} est un polynôme en M, et donc un polynôme en C, on a bien $M \in \mathbb{C}[C]^{\times}$, d'où l'égalité.

Etape 3: Soit $M \in \mathbb{C}[C]$, on a vu que $\exp(M) \in \mathbb{C}[C]$, de plus, on sait que $\exp(M) \in Gl_n(\mathbb{C})$ (son inverse est $\exp(-M)$), par l'étape précédente, on a donc $\exp(\mathbb{C}[C]) \subset \mathbb{C}[C]^{\times}$. Ensuite, comme $\mathbb{C}[C]$ est une \mathbb{C} -algèbre commutative, on a

$$\forall M, N \in \mathbb{C}[C], \exp(M+N) = \exp(M)\exp(N)$$

l'exponentielle induit donc un morphisme de groupes $(\mathbb{C}[C], +) \to (\mathbb{C}[C]^{\times}, \times)$.

Étape 4 :On montre que $\mathbb{C}[C]^{\times}$ est un ouvert connexe par arcs de $\mathbb{C}[C]$. Il s'agit d'un ouvert d'après l'étape 2 $(Gl_n(\mathbb{C})$ est bien-sûr un ouvert de $\mathcal{M}_n(\mathbb{C})$ comme préimage de \mathbb{C}^* par le déterminant). Soient ensuite $M, N \in \mathbb{C}[C]^{\times}$. On peut, pour $z \in \mathbb{C}$, poser $P(z) := \det(zN + (1-z)M)$, qui est un polynôme (de degré n) en z, qui ne s'annule ni en 0, ni en 1. On pose $\gamma:[0,1]\to\mathbb{C}$ un chemin continu de 0 vers 1 qui ne passe par aucune racine de P (ceci est possible car on travaille sur \mathbb{C} , et P est un polynôme non nul). Le chemin $\Gamma:t\mapsto \gamma(t)N+(1-\gamma(t))M$ est alors un chemin continu de M vers N, qui reste dans $\mathbb{C}[C]^{\times}$ par construction de γ .

<u>Étape 5</u>: On montre que $\exp(\mathbb{C}[C])$ est un ouvert de $\mathbb{C}[C]^{\times}$. On sait que

$$d_{\exp}0 = Id_{\mathcal{M}_n(\mathbb{C})}$$

donc det $d_{\exp}0 = 1 \neq 0$, comme l'exponentielle est une application de classe C^1 (et même C^{∞}). On applique le théorème d'inversion locale à $\exp : \mathbb{C}[C] \to \mathbb{C}[C]$, on obtient

- Il existe $U \subset \mathbb{C}[C]$ un voisinage ouvert de 0.
- Il existe $V \subset \mathbb{C}[C]$ un voisinage ouvert de I_n .

tels que exp : $U \to V$ soit un C^1 -difféomorphisme. En particulier, $\exp(\mathbb{C}[C])$ contient un voisinage ouvert de I_n dans $\mathbb{C}[C]$.

Soit à présent $\exp(M) \in \exp(\mathbb{C}[C])$ (avec donc $M \in \mathbb{C}[C]$). La multiplication à gauche par $\exp(M)$ est un homéomorphisme de $\exp(\mathbb{C}[C])$ sur lui même, qui envoie V sur $\exp(M)V = \exp(M+U)$, qui est un ouvert de $\mathbb{C}[C]$ contenant $\exp(M)$ et inclus dans $\exp(\mathbb{C}[C])$, qui est donc voisinage de $\exp(M)$: $\exp(\mathbb{C}[C])$ est voisinage de tous ces points dans $\mathbb{C}[C]$: c'est un ouvert de $\mathbb{C}[C]$.

Étape 6 : On montre que $\exp(\mathbb{C}[C])$ est un fermé de $\mathbb{C}[C]^{\times}$. On sait que $\exp(\mathbb{C}[C])$ est un sous-groupe de $\mathbb{C}[C]^{\times}$, donc $\mathbb{C}[C]^{\times} \setminus \exp(\mathbb{C}[C])$ peut s'écrire comme la réunion des classes à gauche non triviales modulo $\exp(\mathbb{C}[C])$:

$$\mathbb{C}[C]^{\times} \setminus \exp(\mathbb{C}[C]) = \bigcup_{Min\mathbb{C}[C]^{\times} \setminus \exp(\mathbb{C}[C])} M \exp(\mathbb{C}[C])$$

or ces classes à gauche sont des ouverts (images d'un ouvert par un homéomorphisme, cf étape précédente), donc $\mathbb{C}[C]^{\times} \setminus \exp(\mathbb{C}[C])$ est un ouvert comme réunion d'ouverts, et $\exp(\mathbb{C}[C])$ est un fermé de $\mathbb{C}[C]^{\times}$.

Etape 7: Nous avons montré que $\exp(\mathbb{C}[C])$ est un ouvert fermé (non vide) du connexe $\overline{\mathbb{C}[C]^{\times}}$, on a donc $\exp(\mathbb{C}[C]) = \mathbb{C}[C]^{\times}$. Ainsi, pour $C \in Gl_n(\mathbb{C})$, on a $C \in \mathbb{C}[C]^{\times} = \exp(\mathbb{C}[C]) \subset \exp(\mathcal{M}_n(C))$, d'où le résultat.