CORRECTION SÉANCE 2 (15 SEPTEMBRE)

Exercice 1.

1. On montre premièrement que

$$\forall z \in \mathbb{C}, \overline{\exp(z)} = \exp(\overline{z})$$

On a par définition que $\exp(z) = \lim_{n\to\infty} S_n(z)$ où $S_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$. Comme $S_n(z)$ est une somme finie, on a $\overline{S_n(z)} = S_n(\overline{z})$ pour tout n (car la conjugaison complexe est un **automorphisme de corps** du corps \mathbb{C}). Comme la conjugaison complexe est de plus continue, on a

$$\overline{\exp(z)} = \overline{\lim_{n \to \infty} S_n(z)} = \lim_{n \to \infty} \overline{S_n(z)} = \lim_{n \to \infty} S_n(\overline{z}) = \exp(\overline{z})$$

En particulier, $\overline{\exp(it)} = \exp(-it)$, et

$$|\exp(it)|^2 = \exp(it) \exp(-it) = \exp(it - it) = \exp(0) = 1$$

donc $\exp(it) \in \mathfrak{S}^1$ pour $t \in \mathbb{R}$. D'où

$$1 = \Re(e^{it})^2 + \Im(e^{it})^2 = \cos(t)^2 + \sin(t)^2$$

soit le résultat voulu.

La plupart d'entre vous avait utilisé une preuve nettement plus calculatoire, que je reproduis ici

$$\cos(t)^{2} + \sin(t)^{2} = \frac{(e^{it} + e^{-it})^{2}}{2^{2}} + \frac{(e^{it} - e^{-it})^{2}}{(2i)^{2}}$$

$$= \frac{e^{2it} + 2e^{it}e^{-it} + e^{-2it}}{4} + \frac{e^{2it} - 2e^{it}e^{-it} + e^{-2it}}{-4}$$

$$= \frac{e^{2it} + 2 + e^{-2it} - e^{2it} + 2 - e^{-2it}}{4}$$

$$= \frac{4}{4} = 1$$

Notons toutefois que dans la définition de cosinus et de sinus, que j'avais donné au tableau j'ai déjà utilisé que $\overline{e^{it}} = e^{-it}$!

2. Par définition, on a

$$\exp(it) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!}$$
 et $\exp(-it) = \sum_{n=0}^{\infty} (-1)^n \frac{(it)^n}{n!}$

(ces deux fonctions sont développables en série entière comme composée d'un polynôme et d'une fonction développable en série entière : l'exponentielle). Par somme (et multiplication par un scalaire), les fonctions cosinus et sinus sont développables en séries entières (avec rayon de convergence infini) avec

$$\cos(t) = \frac{1}{2}(\exp(it) + \exp(-it)) = \sum_{n=0}^{\infty} \frac{1 + (-1)^n}{2} \frac{(it)^n}{n!}$$

On sait que

$$\frac{1+(-1)^n}{2} = \begin{cases} 1 & \text{si } n \text{ pair} \\ 0 & \text{si } n \text{ impair} \end{cases}$$

donc cette somme est en fait égale à

$$\cos(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k}}{(2k)!} = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!}$$

ce qui est le développement en série entière « classique » de cosinus. De même pour sinus, on a :

$$\sin(t) = \frac{1}{2i}(\exp(it) - \exp(-it)) = \sum_{n=0}^{\infty} \frac{1 - (-1)^n}{2} \frac{(it)^n}{in!}$$

On sait que

$$\frac{1 - (-1)^n}{2} = \begin{cases} 1 & \text{si } n \text{ impair} \\ 0 & \text{si } n \text{ pair} \end{cases}$$

donc cette somme est en fait égale à

$$\sin(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k+1}}{i(2k+1)!} = \sum_{k=0}^{\infty} \frac{i^{2k+1}}{i} \frac{t^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k+1}}{(2k+1)!}$$

Et (chose que j'avais oublié de faire en correction!) il reste à calculer les dérivées de ces fonctions, pour ce faire on utilise les développements en séries entières!

$$\cos'(t) = \sum_{k=1}^{\infty} (-1)^k \frac{t^{2k-1}}{(2k-1)!} = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{t^{2n+1}}{(2n+1)!} = -\sin(t)$$
$$\sin'(t) = \sum_{k=1}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!} = \cos(t)$$

On retrouve les (très classiques) formules des dérivées de cosinus et sinus.

3. C'est un calcul immédiat :

$$(\cos(t) + i\sin(t))^n = (e^{it})^n = e^{int} = \cos(nt) + i\sin(nt)$$

4. C'est aussi un calcul immédiat :

$$\cos(a+b) + i\sin(a+b) = e^{a+b} = e^a e^b = (\cos(a) + i\sin(a))(\cos(b) + i\sin(b))$$
$$= \cos(a)\cos(b) - \sin(a)\sin(b) + i(\sin(a)\cos(b) + \sin(b)\cos(a))$$

On obtient les formules voulues en identifiant les parties réelles et imaginaires.

Exercice 3.

1. On l'a vu, le noeud du problème est de montrer la propriété suivante

$$\forall a, b \in \mathbb{R}, a^2 + b^2 = 1 \Rightarrow \exists t \in \mathbb{R} \mid \cos(t) = a, \sin(t) = b$$

On utilise abondamment les résultats de le l'exercice 2.

Si $a, b \ge 0$, alors on a $a \in [0, 1]$, on sait par ailleurs que $\cos(0) = 1$, et que $\pi/2$ est (par définition!) la première valeur positive sur laquelle cosinus s'annule, il existe donc par le théorème des valeurs intermédiaires un $t \in [0, \pi/2]$ tel que $\cos(t) = u$, on a alors $\sin(t)^2 = 1 - u^2 = v^2$, or comme $t \in [0, \pi/2]$, on a $\sin(t) \ge 0$ et $\sin(t) = v$.

Si u < 0 et $v \ge 0$, alors les conditions précédentes sont satisfaites par -i(a+ib), donc il existe t tel que $\sin(t) = -a$, $\cos(t) = b$, et $\cos(t + \pi/2) = a$, $\sin(t + \pi/2) = b$.

Enfin, si v < 0, les deux cas précédents montrent qu'il existe t tel que $\cos(t) = -a, \sin(t) = -b$, on a alors $\cos(t + \pi) = \sin(t + \pi) = b$.

2. On montre que la fonction exponentielle restreinte à \mathbb{R} donne une bijection croissante de \mathbb{R} dans \mathbb{R}_+^* . Premièrement, on a $e^0 = 1$, et la fonction exponentielle est continue, s'il existe $t \in \mathbb{R}$ tel que $e^t < 0$, alors il existe par le théorème des valeurs intermédiaires un $x \in \mathbb{R}$ tel que $e^x = 0$. Mais alors $e^1 = e^{(1-x)+x} = e^{1-x}e^x = 0$ ce qui est une contradiction : la fonction exponentielle est donc strictement positive sur \mathbb{R} .

Comme exp est sa propre dérivée, il s'agit d'une fonction strictement croissante (sa dérivée est strictement positive), de plus, on a $e^1 > e^0 = 1$, donc $e^n = (e^1)^n$ tend vers $+\infty$, et $e^-n = \frac{1}{e^n}$ tend vers 0, on a donc

$$\lim_{x \to -\infty} \exp(x) = 0 \text{ et } \lim_{x \to +\infty} \exp(x) = +\infty$$

Par le théorème des valeurs intermédiaires, on a bien que exp : $\mathbb{R} \to \mathbb{R}_+^*$ est une bijection. On note ln sa réciproque sur l'axe réel.

Pour $z \in \mathbb{C}^*$, on a $z/|z| \in \mathfrak{S}^1$, donc $z = |z|e^{it}$ par la question précédente, ensuite comme |z| > 0, on a $|z| = e^a$ pour un certain réel a, d'où $z = e^a e^{it} = e^{a+it}$, soit le résultat voulu : tout nombre complexe non nul admet un antécédent (en fait plusieurs) par la fonction exponentielle.

Exercice 4.

1. Comme somme d'une série géométrique (et comme $u \neq 1$), on a

$$u^4 + u^3 + u^2 + u + 1 = \frac{u^5 - 1}{u - 1}$$

Or, on a $u^5 = e^{2i\pi} = 1$, donc $u^4 + u^3 + u^2 + u + 1 = 0$.

2. On a

$$a + b = u^4 + u^3 + u^2 + u = -1$$
 et $ab = (u^4 + u)(u^3 + u^2) = u^7 + u^4 + u^6 + u^3 = u^2 + u^4 + u + u^3 = -1$

Donc

$$(X-a)(X-b) = X - (a+b) + ab = X + X - 1$$

Les racines de ce polynôme sont données par $\frac{-1-\sqrt{5}}{2}$ et $\frac{-1+\sqrt{5}}{2}$, mais les racines de ce polynôme sont par définition a et b, d'où le résultat.

3. On a $u^4 = u^{-1} = \overline{u}$ car $u \in \mathfrak{S}^1$, donc

$$\cos\left(\frac{2\pi}{5}\right) = \Re(u) = \frac{u + \overline{u}}{2} = \frac{a}{2}$$

par ailleurs, on sait que $\cos\left(\frac{2\pi}{5}\right)$ car $\frac{2\pi}{5} < \frac{\pi}{2}$, la seule solution est alors $a = \frac{-1+\sqrt{5}}{2}$ et $\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4}$. 4. Toujours car $\frac{2\pi}{5} \in \left[0, \frac{\pi}{2}\right]$, on sait que

$$\sin\left(\frac{2\pi}{5}\right) = \sqrt{1 - \cos\left(\frac{2\pi}{5}\right)^2}$$

$$= \sqrt{1 - \frac{(\sqrt{5} - 1)^2}{16}}$$

$$= \sqrt{1 - \frac{5 - 2\sqrt{5} + 1}{16}}$$

$$= \sqrt{\frac{16 - 6 + 2\sqrt{5}}{16}}$$

$$= \sqrt{\frac{5 + \sqrt{5}}{8}}$$

4. On a, pour $t \in \mathbb{R}$

$$\cos(2t) = \cos(t)^2 - \sin(t)^2 = \cos(t)^2 - (1 - \cos(t)^2) = 2\cos(t)^2 - 1$$

En l'occurrence, $t = \frac{\pi}{5}$, et $\cos(2t)$, $\cos(t) > 0$, on a donc

$$\cos\left(\frac{\pi}{5}\right) = \sqrt{\frac{\cos\left(\frac{2\pi}{5}\right) + 1}{2}} = \sqrt{\frac{3 + \sqrt{5}}{8}}$$

Et, comme dans le cas de $\frac{2\pi}{5}$,

$$\sin\left(\frac{\pi}{5}\right) = \sqrt{1 - \cos\left(\frac{\pi}{5}\right)^2}$$
$$= \sqrt{1 - \frac{3 + \sqrt{5}}{8}}$$
$$= \sqrt{\frac{5 - \sqrt{5}}{8}}$$

Enfin, pour $\frac{3\pi}{5}$, on utilise

$$\cos\left(\frac{3\pi}{5}\right) = \cos\left(\frac{\pi}{5} + \frac{2\pi}{5}\right) = \cos\left(\frac{\pi}{5}\right)\cos\left(\frac{2\pi}{5}\right) - \sin\left(\frac{\pi}{5}\right)\sin\left(\frac{2\pi}{5}\right)$$

$$= \sqrt{\frac{3+\sqrt{5}}{8}}\sqrt{\frac{6-2\sqrt{5}}{16}} - \sqrt{\frac{5-\sqrt{5}}{8}}\sqrt{\frac{5+\sqrt{5}}{8}}$$

$$= \sqrt{\frac{18-10}{128}} - \sqrt{\frac{25-5}{64}}$$

$$= \sqrt{\frac{1}{16}} - \frac{2\sqrt{5}}{8}$$

$$= \frac{1-\sqrt{5}}{4}$$

$$\sin\left(\frac{3\pi}{5}\right) = \sin\left(\frac{\pi}{5} + \frac{2\pi}{5}\right) = \sin\left(\frac{\pi}{5}\right)\cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{\pi}{5}\right)\sin\left(\frac{2\pi}{5}\right)$$

$$= \sqrt{\frac{5 - \sqrt{5}}{8}}\sqrt{\frac{6 - 2\sqrt{5}}{16}} + \sqrt{\frac{3 + \sqrt{5}}{8}}\sqrt{\frac{5 + \sqrt{5}}{8}}$$

$$= \sqrt{\frac{30 - 16\sqrt{5} + 10}{128}} + \sqrt{\frac{15 + 8\sqrt{5} + 5}{64}}$$

$$= \sqrt{\frac{5 - 2\sqrt{5}}{16}} + \sqrt{\frac{5 + 2\sqrt{5}}{16}}$$

Il y a une autre méthode, plus astucieuse mais plus simple : on a

$$\frac{3\pi}{5} = \frac{\pi}{2} + \frac{\pi}{10}$$
 et $\frac{2\pi}{5} = \frac{\pi}{2} - \frac{\pi}{10}$

donc $\cos\left(\frac{3\pi}{5}\right) = -\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{3\pi}{5}\right) = \sin\left(\frac{2\pi}{5}\right)$.