LICENCE 3 – ALGÈBRE LINÉAIRE AVANCÉE

R. ABDELLATIF ET O. GARNIER

TD 4 – Formes linéaires, hyperplans et (bi)dualité

I) Mise en jambes : rappels sur les formes linéaires et les hyperplans

Exercice 1. —

Soit f une forme linéaire sur \mathbb{R}^3 vérifiant f(4,2,0)=2, f(1,2,-3)=-7 et f(0,2,5)=-1. Déterminer f(x,y,z) pour tout triplet $(x,y,z)\in\mathbb{R}^3$.

Exercice 2. —

Etant donné un corps \mathbb{K} et un espace vectoriel E sur \mathbb{K} , démontrer que les hyperplans de E sont exactement les noyaux des éléments non nuls de E^* .

Exercice 3. —

Soit \mathbb{K} un corps et E un \mathbb{K} -espace vectoriel de dimension finie. Etant données deux formes linéaires non nulles $\alpha, \beta \in E^*$, démontrer l'équivalence des assertions suivantes.

- (a) $\ker \alpha = \ker \beta$.
- (b) Il existe un scalaire non nul $\lambda \in \mathbb{K}$ tel que $\alpha = \lambda \beta$.

II) Espaces (bi)duaux et bases (anté)duales

Exercice 4. —

Soit \mathbb{K} un corps. On note $E = \mathbb{K}^{\mathbb{N}}$ le \mathbb{K} -espace vectoriel des suites à valeurs dans \mathbb{K} et $F = \mathbb{K}^{(\mathbb{N})}$ le sous- \mathbb{K} -espace vectoriel de E des suites nulles à partir d'un certain rang. Pour tout entier $k \in \mathbb{N}$, on note $e^k = (\delta_{nk})_{n \in \mathbb{N}}$ la suite dont le seul terme non nul est en position k et égal à 1.

- 1. Pourquoi est-ce que $(e^k)_{k\in\mathbb{N}}$ n'est pas une base de E sur \mathbb{K} ?
- 2. Démontrer que $(e^k)_{k\in\mathbb{N}}$ est une base de F sur \mathbb{K} .
- 3. Montrer que F^* est isomorphe à E.
- 4. Est-ce que E^* est isomorphe à F?

Exercice 5. —

On considère $E = \mathbb{R}_2[X]$ muni de sa base canonique $(1, X, X^2)$. Pour tout entier $k \in \{0, 1, 2\}$, on note $\varphi_k \in E^*$ l'application d'évaluation en $k : \forall k \in \{0, 1, 2\}, \forall P \in E, \varphi_k(P) = P(k)$.

- 1. Démontrer que $\{\varphi_0, \varphi_1, \varphi_2\}$ est une base de E^* sur \mathbb{R} .
- 2. Déterminer sa base antéduale.

Exercice 6. —

Soit \mathbb{K} un corps de caractéristique nulle. Pour tout entier $n \geq 1$, on rappelle que l'on note $\mathbb{K}_n[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} de degré inférieur ou égal à n.

- 1. Démontrer que pour tout $n \geq 1$ et tout scalaire $\alpha \in \mathbb{K}$, la famille $\mathcal{B}_n := ((X \alpha)^k)_{0 \leq k \leq n}$ est une base du \mathbb{K} -espace vectoriel $\mathbb{K}_n[X]$.
- 2. Déterminer la base duale de \mathcal{B}_n .

LICENCE 3 – ALGÈBRE LINÉAIRE AVANCÉE

R. Abdellatif et O. Garnier

TD 4 – Formes linéaires, hyperplans et (bi)dualité

Exercice 7. —

Expliquer comment obtenir une définition des polynômes interpolateurs de Lagrange en termes de dualité et de base (anté)duale.

Exercice 8. —

Soient \mathbb{K} un corps et $n \geq 1$ un entier. Notons $E = \mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées de taille $n \times n$ à coefficients dans \mathbb{K} .

- 1. Quelle est la dimension du \mathbb{K} -espace vectoriel E?
- 2. Montrer que l'application $[(A, B) \in E \times E \mapsto \text{Tr}(AB) \in \mathbb{K}]$ est une forme bilinéaire symétrique non dégénérée.
- 3. En déduire que pour toute forme linéaire $f \in E^*$, il existe une matrice A telle que : $\forall M \in E, f(M) = \text{Tr}(AM)$.

Exercice 9. —

Soient f,g,h les formes linéaires sur $E=\mathbb{R}^3$ définies par :

$$\forall (x,y,z) \in \mathbb{R}^3, f(x,y,z) = 2x + 4y + 3z, g(x,y,z) = y + z \text{ et } h(x,y,z) = 2x + 2y - z.$$

- 1. Montrer que (f, g, h) est une base du \mathbb{R} -espace vectoriel E.
- 2. Déterminer sa base antéduale.

Exercice 10. —

Soit \mathbb{K} un corps et E un \mathbb{K} -espace vectoriel. Etant donné·e·s $r \geq 1$ formes linéaires $(\varphi_i)_{1 \leq i \leq r}$ sur E et un entier $k \geq 1$ inférieur ou égal à r, on définit $\varphi : E \to \mathbb{K}^k$ par $\varphi(x) := (\varphi_i(x))_{1 \leq i \leq k}$. Démontrer l'équivalence des assertions suivantes.

- (a) La fonction φ est surjective.
- (b) Les formes linéaires $(\varphi_i)_{1 \le i \le k}$ sont linéaires indépendantes sur \mathbb{K} .

III) Autour de la notion d'orthogonalité

Dans toute cette partie, on considère un espace vectoriel E sur un corps \mathbb{K} et on étudie les notions d'orthogonalité définies par l'accouplement canonique $<.,.>:E\times E^*\to \mathbb{K}$.

Exercice 11. —

- 1. Démontrer que si A est un sous- \mathbb{K} -espace vectoriel de E, alors A^{\perp} est un sous- \mathbb{K} -espace vectoriel de E^* .
- 2. Démontrer que si B est un sous- \mathbb{K} -espace vectoriel de E^* , alors B° est un sous- \mathbb{K} -espace vectoriel de E.

Exercice 12. —

On suppose que E est de dimension finie sur \mathbb{K} .

- 1. Démontrer que pour toute partie A de E, on a $A^{\perp} = \text{Vect}(A^{\perp}) = \text{Vect}(A)^{\perp}$.
- 2. Démontrer que pour toute partie B de E^* , on a $B^{\circ} = \text{Vect}(B^{\circ}) = \text{Vect}(B)^{\circ}$.

R. ABDELLATIF ET O. GARNIER

TD 4 – Formes linéaires, hyperplans et (bi)dualité

Exercice 13. —

On suppose que E est de dimension finie sur \mathbb{K} .

1. Soit A un sous- \mathbb{K} -espace vectoriel de E. Démontrer que l'on a

$$\dim_{\mathbb{K}}(A) + \dim_{\mathbb{K}} A^{\perp} = \dim_{E} \text{ et } (A^{\perp})^{\circ} = A.$$

2. Soit B un sous-K-espace vectoriel de E^* . Démontrer que l'on a

$$\dim_{\mathbb{K}}(B) + \dim_{\mathbb{K}} B^{\circ} = \dim_{E} \text{ et } (B^{\circ})^{\perp} = B.$$

3. En déduire que pour tous sous-espaces vectoriels F et G de E, on a

$$(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$$
 et $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

4. Enoncer et démontrer un résultat analogue pour les sous-espaces vectoriels de E^* .

Exercice 14. —

Etant donnée une famille finie de formes linéaires $(f_i)_{i\in I}$ sur E, démontrer que

$$\bigcap_{i \in I} \ker f_i = \operatorname{Vect}(\{f_i, i \in I\})^{\circ}.$$

L'hypothèse de finitude est-elle nécessaire?

Exercice 15. —

Notons $F = \text{Vect}(1, 2, 1) \subset \mathbb{R}^3$ et $G = \text{Vect}(\{(1, 2, 1), (0, 1, 0)\}) \subset \mathbb{R}^3$.

Déterminer un système d'équations définissant chacun de ces sous-espaces vectoriels de \mathbb{R}^3 . Indication: Si (e_1, e_2, e_3) désigne la base canonique de \mathbb{R}^3 , on vérifiera que $(e_1, e_2, e_1 + 2e_2 + e_3)$ est une base de \mathbb{R}^3 puis on calculera sa base duale et on l'utilisera pour caractériser F^{\perp} et G^{\perp} .

Exercice 16. —

Soit $(f_i)_{i\in I}$ une famille d'éléments de E^* .

- 1. Démontrer que la famille $(f_i)_{i\in I}$ engendre E^* si, et seulement si, $\bigcap_{i\in I} \ker(f_i) = \{0_E\}$.
- 2. Plus généralement, démontrer que le sous-espace vectoriel de E^* engendré par $(f_i)_{i\in I}$ est

$$\left\{ f \in E^* \mid \bigcap_{i \in I} \ker(f_i) \subset \ker f \right\} .$$

3. En supposant E de dimension finie sur \mathbb{K} , établir une relation entre $\dim_{\mathbb{K}} \text{Vect} (\{f_i, i \in I\})$ et $\dim_{\mathbb{K}} \bigcap_{i \in I} \ker f_i$.