Correction TD 3

Exercice 1.

1. La forme f se décompose sur la base duale : $f = ae_1^* + be_2^* + ce_3^*$, on a donc

$$\begin{cases} f(4,2,0) = 4a + 2b = 2\\ f(1,2,-3) = a + 2b - 3c = -7\\ f(0,2,5) = 2b - 5c = 1 \end{cases}$$

un système linéaire qu'il s'agit maintenant de résoudre, on inverse pour cela la matrice

$$M = \begin{pmatrix} 4 & 2 & 0 \\ 1 & 2 & -3 \\ 0 & 2 & 5 \end{pmatrix}$$

on trouve

$$M^{-1} = \frac{1}{54} \begin{pmatrix} 16 & -10 & -6 \\ -5 & 20 & 12 \\ 2 & -8 & 6 \end{pmatrix}$$

Donc

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{54} \begin{pmatrix} 16 & -10 & -6 \\ -5 & 20 & 12 \\ 2 & -8 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -7 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

et $f = 2e_1^* - 3e_2^* + e_3^*$, autrement dit f(x, y, z) = 2x - 3y + z.

2. Par définition, on a $f_1 = 2e_1^* + 4e_2^* + 3e_3^*$, $f_2 = e_2^* + e_3^*$, $f_3 = 2e_1^* + 2e_2^* - e_3^*$, la matrice de passage de la famille f_i à la base canonique duale e_i^* est donc

$$\begin{pmatrix} 2 & 0 & 2 \\ 4 & 1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$$

qui est inversible (son déterminant est -4), donc les f_i forment bien une base de E^* . Soit $e \in E$, on sait que $(f_1(e), f_2(e), f_3(e))$ est donné par Me, où

$$M = \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$$

trouver la base antéduale revient à trouver a, b, c tels que Ma = (1, 0, 0), Mb = (0, 1, 0), Mc = (0, 0, 1), autrement dit, a, b, c sont les colonnes de M^{-1} on calcule donc

$$M^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -10 & -1 \\ -2 & 8 & 2 \\ 2 & -4 & -2 \end{pmatrix}$$

la base antéduale de f_i est donc $a = \frac{1}{4}(3, -2, 2), b = \frac{1}{4}(-10, 8, -4)$ et $c = \frac{1}{4}(-1, 2, -2)$.

Exercice 2. (\Leftarrow) Si $\beta = \lambda \alpha$, alors

$$\beta(x) = 0 \Leftrightarrow \lambda \alpha(x) = 0 \Leftrightarrow \alpha(x) = 0$$

car $\lambda \neq 0$. Donc Ker $\alpha = \text{Ker } \beta$ dans ce cas.

(⇒) Si Ker $\alpha = \text{Ker } \beta$. Soit $x \notin \text{Ker } \alpha$, on sait que Vect x est un supplémentaire de Ker $\alpha = \text{Ker } \beta$, donc tout $e \in E$ s'écrit de manière unique $e = y + \mu x$ avec $y \in \text{Ker } \alpha$ et $\mu \in \mathbb{k}$. On a alors

$$\alpha(e) = \alpha(y + \mu x) = \mu \alpha(x)$$
 et $\beta(e) = \mu \beta(x)$

En posant $\lambda = \beta(x)/\alpha(x)$, on obtient bien le résultat voulu ($\lambda \neq 0$ car $\beta(x) \neq 0$ par hypothèse).

Exercice 3. Le polynôme $(X - \alpha)^k$ est unitaire de degré k, la famille considérée est donc une famille de polynômes échelonnée de taille n, qui forme donc une base de E_n . Ensuite, on sait que

$$\left(\frac{\partial}{\partial X}\right)^{\ell} (X - \alpha)^k = \begin{cases} \frac{k!}{(k - \ell)!} (X - \alpha)^{k - \ell} & \text{si } \ell < k \\ k! & \text{si } \ell = k \\ 0 & \text{si } \ell > k \end{cases}$$

autrement dit, l'évaluation en α de ce polynôme vaut

$$\begin{cases} 0 & \text{si } \ell < k \\ k! & \text{si } \ell = k \\ 0 & \text{si } \ell > k \end{cases}$$

Ainsi, $\frac{1}{k!}ev_{\alpha} \circ \left(\frac{\partial}{\partial X}\right)^k$ est le k-ème élément de la base duale de $(X-\alpha)^k$. La caractéristique 0 était nécessaire pour toujours avoir k! inversible.

Exercice 4. (\Rightarrow) supposons que φ est surjective, et soit une combinaison linéaire

$$\sum_{i=1}^{p} \lambda_i \varphi_i = 0$$

On pose $\alpha: \sum_{i=1}^p \lambda_i e_i^* \in (\mathbb{k}^p)^*$, on a par définition, pour $x \in E$

$$0 = \sum_{i=1}^{p} \lambda_i \varphi_i(x) = 0 = \alpha(\varphi_1(x), \cdots, \varphi_p(x)) = \alpha \circ \varphi(x)$$

comme φ est surjective, cela entraîne $\alpha = 0$, mais donc $\lambda_i = 0$ pour tout i (la seule forme linéaire identiquement nulle est la forme linéaire nulle, dont les coefficients dans la base duale canonique sont 0). Donc les φ_i forment une famille libre.

(\Leftarrow) réciproquement si Im $\varphi \neq k^p$, alors Im φ est contenue dans un certain hyperplan H, noyau d'une forme linéaire α , on a donc $\alpha \circ \varphi = 0$, ce qui donne une combinaison linéaire nulle en les φ_i , et comme $\alpha \neq 0$, cette combinaison linéaire est non triviale : les φ_i ne forment pas une famille libre.

Exercice 5.

1. C'est une vérification immédiate : la trace et la multiplication matricielle sont linéaires, et la symétrie est une

formule connue : le *i*-ème coefficient diagonal du produit AB est $\sum_{j=1}^{n} a_{i,j}b_{j,i}$, donc

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{j,i}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} b_{j,i} a_{i,j}$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{j,i} a_{i,j}$$
$$= tr(BA)$$

2. Pour montrer que f est non dégénérée, il faut montrer que, pour tout $A \in E$, non nulle, la forme linéaire $f_A : B \mapsto \operatorname{tr}(AB)$ est non nulle. Supposons donc qu'un coefficient a_{i_0,j_0} de A est non nul, on considère la matrice $E_{j_0,i_0} = (e_{i,j})_{i,j \in [\![1,n]\!]}$ ayant un seul coefficient non nul égal à 1 en $i=j_0,j=i_0$. On a alors

$$\operatorname{tr}(AE_{j_0,i_0}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} e_{j,i} = a_{i_0,j_0} \neq 0$$

donc f_A est non nulle et f est non dégénérée.

3. Une forme bilinéaire non dégénérée $f: E \times E \to k$ induit un isomorphisme φ entre E et son dual, donné par $\varphi(A) := f_A : B \mapsto f(A, B)$, en particulier, tout élément de E^* s'écrit f_A pour un certain A, ce qui est exactement le résultat souhaité ici.

Exercice 6.

1. Comme f et φ sont des morphismes, c'est aussi le cas de $\varphi \circ f$, qui est donc bien un élément de $M^* = \operatorname{Hom}_R(M,R)$, donc tf est bien a valeur dans M^* , et linéaire par linéarité de la composition.

2.

- a) ${}^t(f+g)(\varphi) = \varphi \circ (f+g) = \varphi \circ f + \varphi \circ g = {}^tf(\varphi) + {}^tg(\varphi).$
- b) $t(rf)(\varphi) = \varphi \circ (rf) = r(\varphi \circ f) = r \cdot t f$
- c) ${}^t(f \circ g)(\varphi) = \varphi \circ f \circ g = {}^tg(\varphi \circ f) = ({}^tg \circ {}^tf)(\varphi)$
- d) Cela découle de la formule précédente : ${}^t(f^{-1}) \circ {}^tf = {}^t(f \circ f^{-1}) = {}^tId = Id$.
- 3. La matrice $A=(a_{i,j})_{i\in \llbracket 1,n\rrbracket,j\in \llbracket 1,m\rrbracket}$ est définie par la formule

$$f(e_j) = \sum_{i=1}^{n} a_{i,j} \varepsilon_i$$

On a par ailleurs ${}^tf(\psi_j) = \psi_j \circ f$, définie par

$$\psi_j \circ f(e_k) = \sum_{i=1}^n a_{i,k} \psi_j(\varepsilon_i) = a_{j,k}$$

donc $\psi_j \circ f = \sum_{k=1}^n a_{j,k} \varphi_k$, la matrice de f dans les bases ψ, φ est donc bien la transposée de A.

- 4. C'est l'application des formules de la question 2 au cas des matrices.
- † Orthogonalité au sens des formes linéaires

Exercice 7.

1. On a $(\lambda \varphi + \psi)(x) = \lambda \varphi(x) + \psi(x) = 0$ si $\varphi, \psi \in A^{\perp}$, qui est donc un sous-espace vectoriel de E^* , pour F^o , on a $F^o = \bigcap_{\varphi \in F} \operatorname{Ker} \varphi$, il s'agit donc d'un sous-espace vectoriel de E.

- a) Soit $\varphi \in A'^{\perp}$ et $x \in A$, on a $x \in A'$, donc $\varphi(x) = 0$ par hypothèse, d'où $\varphi \in A^{\perp}$.
- b) Soit $x \in B'^o$ et $\varphi \in B$, on a $\varphi \in B'$, donc $\varphi(x) = 0$ par hypothèse, d'où $x \in B^o$.
- c) Soit $\varphi \in E^*$, on a

$$\varphi \in A^{\perp} \Leftrightarrow A \subset \operatorname{Ker} \varphi \Leftrightarrow \operatorname{Vect} A \subset \operatorname{Ker} \varphi \Leftrightarrow \varphi \in (\operatorname{Vect} A)^{\perp}$$

- d) On a $B \subset \operatorname{Vect} B$, donc $(\operatorname{Vect} B)^o \subset B^o$, réciproquement si $x \in B^o$, alors $\forall \varphi \in B, \varphi(x) = 0$, comme les éléments de Vect B sont des combinaisons linéaires d'éléments de B, ils valent tous 0 en x, d'où $B^o \subset \operatorname{Vect}(B)^o$ et le résultat.
- 3. On pose $n=\dim E$, et $r=\dim A$, on considère une base (e_1,\cdots,e_r) de A, que l'on complète en une base (e_1,\cdots,e_n) de E. Soit $\varphi=\sum_{i=1}^n\lambda_ie_i^*$ une forme linéaire sur E, on a $\varphi\in A^\perp$ si et seulement si

$$\forall k \in [1, r], 0 = \varphi(e_k) = \lambda_k$$

autrement dit si $\varphi \in \text{Vect}(e_{r+1}^*, \dots, e_n^*)$, d'où $A^{\perp} = \text{Vect}(e_{r+1}^*, \dots, e_n^*)$ est de dimension n-r comme annoncé. On a également clairement

$$A^{\perp o} = (\text{Vect}(e_{r+1}^*, \dots, e_n^*))^o = \text{Vect}(e_1, \dots, e_r) = A$$

Exercice 8.

1. On a

$$\varphi \in \operatorname{Ker}^t f \Leftrightarrow \varphi \circ f = 0 \Leftrightarrow \operatorname{Im} f \subset \operatorname{Ker} \varphi \Leftrightarrow \varphi \in (\operatorname{Im} f)^{\perp}$$

la conclusion sur le rang découle alors de l'exercice précédent. (celle sur les matrices découle à son tour de l'exercice 6).

- 3.a) On a ${}^t\partial(\varphi)=\varphi\circ\partial$, qui à un polynôme P associe $\varphi(P')$, si P est constant, P'=0 et ${}^t\partial(\varphi)(P)=0$, d'où le résultat.
- b) On sait que ∂ est surjective car tout polynôme admet des primitives (qui sont encore des polynômes), en revanche, $\operatorname{Im}^t \partial$ ne contient que des formes linéaires s'annulant sur les constante, elle n'est donc pas égale à $\mathbb{k}[X]^*$.
- † Dualité et dimension

Exercice 9.

1. Soit $u=(u_n)_{n\in\mathbb{N}}\in F$ une suite nulle à partir d'un certain rang (notons N ce rang), on a

$$u = \sum_{i=0}^{N} u_i e^i$$

En effet cette dernière suite a pour j-ème valeur $\sum_{i=0}^{N} u_i \delta_{i,j} = u_j$ pour $j \leq N$ et 0 sinon, tout comme u. La famille (e^i) est donc génératrice, et elle est clairement libre : c'est une base de F.

Ce n'est pas une base de E, car on aurait besoin de "combinaisons linéaires infinies" pour atteindre tous les éléments de E à partir de (e^i) .

2. Comme (e^i) est une base de F, définir une forme linéaire φ sur F revient exactement à définir les valeurs $\varphi(e_i)_{i\in\mathbb{N}}$. On a donc une bijection $F^* \to E$ envoyant une forme linéaire φ sur la suite $(\varphi(e_i))_{i\in\mathbb{N}}$, il est facile de vérifier que cette bijection est un isomorphisme d'espaces vectoriels.

(Remarque, il est facile de montrer que F est en fait isomorphe à $\mathbb{k}[X]$, on vient donc de calculer le dual de $\mathbb{k}[X]$).

Exercice 10.

1. Premièrement, b_k^* est bien défini (car la décomposition sur la base $\{b_i\}$ est unique), ensuite, on a

$$b_k^* \left(\nu \sum_{i \in I} \lambda_i b_i + \sum_{i \in I} \mu_i b_i \right) = \nu \lambda_k + \mu_k$$

donc b_k^* est bien linéaire.

2. Soit

$$0 = \sum_{i \in I} \mu_i b_i^* =: \varphi$$

une combinaison linéaire <u>finie</u> nulle des b_i , on a par définition $0 = \varphi(b_k) = \mu_k$ pour tout $k \in I$, donc tous les μ_k sont nuls, la famille $\{b_i^*\}$ est donc libre.

- 3. En dimension finie, dim $E^* = \dim E$, et $\{b_i^*\}$ est une famille libre de même taille qu'une base de E, il s'agit donc d'une base de E^* .
- 4. Comme $\{b_i\}$ est une base de E, une forme linéaire sur E est exactement définie par sa valeur sur la base, φ est alors définie comme la forme linéaire valant 1 sur chacun des b_i (l'astuce étant que, même si φ est à priori définie par une somme infinie, la valeur de $\varphi(x)$ sera toujours une somme finie, car x est toujours une combinaison linéaire finie des b_i).

Enfin, $\varphi \notin \text{Vect}(\{b_i\}_{i \in I})$, en effet $\psi \in \text{Vect}(\{b_i\}_{i \in I})$ est une combinaison linéaire finie des b_i , il existe donc un b_k n'apparaissant pas dans cette combinaison (car I est infini), donc $\varphi(b_k) = 1 \neq 0 = \psi(b_k)$, donc $\varphi \neq \psi$.

Exercice 11.

1. On a

$$ev_x(\lambda\varphi + \psi) = (\lambda\varphi + \psi)(x) = \lambda\varphi(x) + psi(x) = \lambda ev_x(\varphi) + ev_x(\psi)$$

par définition de l'addition (et de la multiplication scalaire) sur les formes linéaires, donc $ev_x \in E^{**}$.

2. On a

$$ev_{\lambda x+y}(\varphi) = \varphi(\lambda x+y) = \lambda \varphi(x) + \varphi(y) = (\lambda ev_x + ev_y)(\varphi)$$

 $\operatorname{car} \varphi$ est linéaire

3. Soit $x \in E$, on a

$$ev_x = 0 \Leftrightarrow \forall \varphi \in E^*, \langle \varphi, x \rangle = 0 \Leftrightarrow x \in (E^*)^o = \{0\}$$

donc ev est injective.

Si E est de dimension finie, on a dim $E = \dim E^* = \dim E^{**}$, donc ev est un isomorphisme.

Si E est de dimension infinie, on a dim $E^{**} > \dim E^* > \dim E$, donc E et E^** ne peuvent pas être isomorphes.

† Une application

Exercice 12.

1. Notons $G = \text{Vect}(\varphi_{-1}, \varphi_0, \varphi_1)$, on veut montrer que cet espace est égal à F, il suffit pour cela de montrer que $G^o = \{0\}$, soit donc $P \in E$ tel que P(-1) = P(0) = P(1) = 0, P est alors un polynôme de degré 2 admettant 3 racines distinctes : c'est forcément le polynôme nul : $G^o = \{0\}$ et $G = F^*$.

Pour la base antéduale, P_{-1} est défini par les équations

$$P_{-1}(-1) = 1$$
, $P_{-1}(0) = 0$, $P_{-1}(1) = 0$

de même pour P_0 et P_1 , on trouve donc

$$P_{-1} = \frac{1}{2}X(X-1), P_0 = 1 - X^2, P_1 = \frac{1}{2}X(X+1)$$

2. On a

$$\phi(P_{-1}) = \frac{1}{3}, \quad \phi(P_0) = \frac{4}{3}, \quad \phi(P_1) = \frac{1}{3}$$

Donc $\phi = \frac{1}{3}\varphi_{-1} + \frac{4}{3}\varphi_0 + \frac{1}{3}\varphi_1$, ce qui est exactement la formule voulue.