Algèbre linéaire avancée

CORRECTION TD1BIS

Exercice 1.

- 1. Soit $y = p(x) \in \text{Im } p$, si y est en plus dans Ker p, on a p(y) = 0, mais par hypothèse, p(y) = p(p(x)) = p(x) = y = 0, d'où le résultat.
- 2. Si $y = p(x) \in \text{Im } p$, alors p(y) = p(p(x)) = p(x) = y, réciproquement, si p(y) = y, alors $y \in \text{Im } p$ par définition (puisque c'est l'image de y).
- 3. On a p(x p(x)) = p(x) p(p(x)) = p(x) p(x) = 0.
- 4. Pour tout $x \in M$, on a x = x p(x) + p(x), avec $x p(x) \in \text{Ker } p \text{ et } p(x) \in \text{Im } p$, donc Ker p + Im p = M, et cette somme est directe d'après la question 1.

Exercice 2.

1. Si G est un supplémentaire de F, alors $F \cap G = \{0\}$ et tout $x \in E$ s'écrit de manière unique sous la forme f + g avec $f \in F$ et $g \in G$.

On considère la restriction de $E \to E/F$ à G, on obtient un morphisme $\varphi: G \to E/F$, envoyant g sur \overline{g} . Soit $\overline{x} \in E/F$, comme $E = F \oplus G$, on a x = f + g, donc $\overline{x} = \overline{f} + \overline{g} = \overline{g}$ et φ est surjective. Ensuite, on a $g \in \operatorname{Ker} \varphi$ si et seulement si $\overline{g} = 0$, autrement dit $g \in F$, mais alors $g \in G \cap F = \{0\}$, donc φ est injective : c'est un isomorphisme.

2.a) L'intersection $G \cap \text{Ker } \partial$ est triviale : si P est un polynôme constant, alors P(0) = 0 entraı̂ne P = 0. Ensuite, soit $P(X) \in \mathbb{k}[X]$, on a

$$P(X) = (P(X) - P(0)) + P(0)$$

qui est bien une décomposition sur $G + \operatorname{Ker} \partial$, d'où la somme directe.

b) Par le théorème d'isomorphisme, on sait que $\mathbb{k}[X]/\mathrm{Ker}\ p \simeq \mathrm{Im}\ \partial = \mathbb{k}[X]$, par la question 1, ceci est isomorphe à G, qui est donc un sous-espace strict de $\mathbb{k}[X]$ (il ne contient pas le polynôme 1), qui lui est pourtant isomorphe.

Exercice 3.

- 1. On a $u: E \to E$, en composant par la projection $p: E \to E/F$, on obtient un morphisme $p \circ u: E \to E/F$. Soit $x \in F$, on a $u(x) \in F$, donc p(u(x)) = 0 et $x \in \text{Ker } p \circ u$, donc $F \subset \text{Ker } p \circ u$, d'où une factorisation $\overline{u}: E/F \to E/F$, envoyant \overline{x} sur u(x).
- 2. Par définition, on a $\overline{u} \circ p = p \circ u$, donc p induit un morphisme $(E, u) \to (E/F, \overline{u})$ qui est un morphisme de $\mathbb{k}[X]$ -module. Ce morphisme est surjectif, et son noyau est $(F, u|_F)$, d'où le résultat.
- 3. Commençons par montrer que $\overline{\mathcal{E}}$ est une famille libre de E/F : soit une combinaison linéaire

$$0 = \sum_{i=r+1}^{n} \lambda_i \overline{e_i} = \overline{\sum_{i=r+1}^{n} \lambda_i e_i}$$

(la dernière égalité vient du fait que la projection $E \to E/F$ est une application linéaire). Ceci équivaut à $\sum_{i=r+1}^{n} \lambda_i e_i \in F$, mais comme $\text{Vect}(e_{r+1}, \cdots, e_n)$ est un supplémentaire de F, ceci entraine $\sum_{i=r+1}^{n} \lambda_i e_i = 0$, d'où $\lambda_i = 0$ car \mathcal{E} est une base par hypothèse.

Ensuite, on doit montrer que $\overline{\mathcal{E}}$ est une famille génératrice : soit $\overline{x} \in E/F$, on sait que x s'écrit sous la forme $x = \sum_{i=1}^r \lambda_i f_i + \sum_{i=r+1}^n \lambda_i e_i$, et on a

$$\overline{x} = \overline{\sum_{i=1}^{r} \lambda_i f_i + \sum_{i=r+1}^{n} \lambda_i e_i} = \sum_{i=1}^{r} \lambda_i \overline{f_i} + \sum_{i=r+1}^{n} \lambda_i \overline{e_i} = \sum_{i=r+1}^{n} \lambda_i \overline{e_i}$$

donc x est bien engendré par $\overline{\mathcal{E}}$, qui forme donc une base de E/F.

4. Soit $f_i \in \mathcal{F}$, comme F est u-stable, on a $u(f_i) \in F$, donc

$$u(f_j) = \sum_{i=1}^{r} A_{i,j} f_j + \sum_{i=r+1}^{n} 0e_i$$

Soit ensuite $e_j \in \mathcal{E}$, on a $\overline{u(e_j)} = \overline{u}(\overline{e_j})$, donc le coefficients de $u(e_j)$ en e_i est le même que celui de $\overline{u}(\overline{e_j})$ en $\overline{e_i}$. D'où le résultat voulu.

Exercice 4.

1. Premièrement, p est un morphisme :

$$p(rx + x') = (rx + x').m = r.(x.m) + x'.m = r.p(x) + p(x')$$

par définition, on a $\operatorname{Im} p = \{r.m \mid r \in R\}$, donc p est surjectif si et seulement si M est monogène. 2. Si $a \in I$ est dans l'idéal annulateur de M, on a en particulier a.m = 0 = p(a) par hypothèse. Réciproquement si $a \in \operatorname{Ker} p$, alors p(a) = a.m = 0, mais alors, pour $m' \in M$, il existe $r \in R$ tel que m' = r.m et on a

$$a.m' = a.(r.m) = r.(a.m) = r.0 = 0$$

donc a est dans l'idéal annulateur de M.

3. C'est le théorème d'isomorphisme appliqué au morphisme p.